Properties

Label 2-2888-1.1-c1-0-65
Degree $2$
Conductor $2888$
Sign $-1$
Analytic cond. $23.0607$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.347·3-s + 1.53·5-s − 0.305·7-s − 2.87·9-s + 0.305·11-s + 0.347·13-s − 0.532·15-s − 1.87·17-s + 0.106·21-s − 2.83·23-s − 2.65·25-s + 2.04·27-s + 3.50·29-s + 5.82·31-s − 0.106·33-s − 0.467·35-s − 8.12·37-s − 0.120·39-s + 2.47·41-s − 1.16·43-s − 4.41·45-s − 6.24·47-s − 6.90·49-s + 0.652·51-s − 7.20·53-s + 0.467·55-s − 11.3·59-s + ⋯
L(s)  = 1  − 0.200·3-s + 0.685·5-s − 0.115·7-s − 0.959·9-s + 0.0920·11-s + 0.0963·13-s − 0.137·15-s − 0.455·17-s + 0.0231·21-s − 0.591·23-s − 0.530·25-s + 0.392·27-s + 0.651·29-s + 1.04·31-s − 0.0184·33-s − 0.0790·35-s − 1.33·37-s − 0.0193·39-s + 0.386·41-s − 0.177·43-s − 0.657·45-s − 0.911·47-s − 0.986·49-s + 0.0913·51-s − 0.989·53-s + 0.0630·55-s − 1.48·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(23.0607\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2888,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 0.347T + 3T^{2} \)
5 \( 1 - 1.53T + 5T^{2} \)
7 \( 1 + 0.305T + 7T^{2} \)
11 \( 1 - 0.305T + 11T^{2} \)
13 \( 1 - 0.347T + 13T^{2} \)
17 \( 1 + 1.87T + 17T^{2} \)
23 \( 1 + 2.83T + 23T^{2} \)
29 \( 1 - 3.50T + 29T^{2} \)
31 \( 1 - 5.82T + 31T^{2} \)
37 \( 1 + 8.12T + 37T^{2} \)
41 \( 1 - 2.47T + 41T^{2} \)
43 \( 1 + 1.16T + 43T^{2} \)
47 \( 1 + 6.24T + 47T^{2} \)
53 \( 1 + 7.20T + 53T^{2} \)
59 \( 1 + 11.3T + 59T^{2} \)
61 \( 1 + 11.3T + 61T^{2} \)
67 \( 1 - 0.361T + 67T^{2} \)
71 \( 1 - 12.9T + 71T^{2} \)
73 \( 1 - 5.99T + 73T^{2} \)
79 \( 1 - 9.04T + 79T^{2} \)
83 \( 1 + 16.5T + 83T^{2} \)
89 \( 1 + 1.04T + 89T^{2} \)
97 \( 1 + 9.39T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.388063398798180243162153977185, −7.79241321178618898777449452961, −6.50261980293782961947609480047, −6.27907970531489713457300804665, −5.34313416931971496385776554454, −4.62018398821716743298830091210, −3.46026821692991231785918825610, −2.59370886379618239346426044468, −1.57483238642487701502563308613, 0, 1.57483238642487701502563308613, 2.59370886379618239346426044468, 3.46026821692991231785918825610, 4.62018398821716743298830091210, 5.34313416931971496385776554454, 6.27907970531489713457300804665, 6.50261980293782961947609480047, 7.79241321178618898777449452961, 8.388063398798180243162153977185

Graph of the $Z$-function along the critical line