Properties

Label 2-2888-1.1-c1-0-6
Degree $2$
Conductor $2888$
Sign $1$
Analytic cond. $23.0607$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.29·3-s + 2.83·5-s − 4.51·7-s + 2.28·9-s − 5.79·11-s + 0.740·13-s − 6.50·15-s − 5.42·17-s + 10.3·21-s − 3.94·23-s + 3.01·25-s + 1.64·27-s − 5.50·29-s + 5.13·31-s + 13.3·33-s − 12.7·35-s + 6.55·37-s − 1.70·39-s − 6.98·41-s + 5.53·43-s + 6.46·45-s + 0.994·47-s + 13.3·49-s + 12.4·51-s + 1.00·53-s − 16.4·55-s + 0.364·59-s + ⋯
L(s)  = 1  − 1.32·3-s + 1.26·5-s − 1.70·7-s + 0.760·9-s − 1.74·11-s + 0.205·13-s − 1.68·15-s − 1.31·17-s + 2.26·21-s − 0.823·23-s + 0.603·25-s + 0.317·27-s − 1.02·29-s + 0.923·31-s + 2.31·33-s − 2.15·35-s + 1.07·37-s − 0.272·39-s − 1.09·41-s + 0.844·43-s + 0.963·45-s + 0.145·47-s + 1.90·49-s + 1.74·51-s + 0.137·53-s − 2.21·55-s + 0.0474·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(23.0607\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2888,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5232801557\)
\(L(\frac12)\) \(\approx\) \(0.5232801557\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 2.29T + 3T^{2} \)
5 \( 1 - 2.83T + 5T^{2} \)
7 \( 1 + 4.51T + 7T^{2} \)
11 \( 1 + 5.79T + 11T^{2} \)
13 \( 1 - 0.740T + 13T^{2} \)
17 \( 1 + 5.42T + 17T^{2} \)
23 \( 1 + 3.94T + 23T^{2} \)
29 \( 1 + 5.50T + 29T^{2} \)
31 \( 1 - 5.13T + 31T^{2} \)
37 \( 1 - 6.55T + 37T^{2} \)
41 \( 1 + 6.98T + 41T^{2} \)
43 \( 1 - 5.53T + 43T^{2} \)
47 \( 1 - 0.994T + 47T^{2} \)
53 \( 1 - 1.00T + 53T^{2} \)
59 \( 1 - 0.364T + 59T^{2} \)
61 \( 1 - 1.82T + 61T^{2} \)
67 \( 1 - 12.8T + 67T^{2} \)
71 \( 1 + 3.46T + 71T^{2} \)
73 \( 1 - 1.41T + 73T^{2} \)
79 \( 1 - 6.19T + 79T^{2} \)
83 \( 1 + 2.62T + 83T^{2} \)
89 \( 1 + 2.10T + 89T^{2} \)
97 \( 1 + 0.874T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.013954470174067706365170575390, −7.942983908237343800158790203026, −6.80491515938533496422999492068, −6.38378974759673878892223716281, −5.72343767940540964902386069380, −5.29651067929328791301669730589, −4.20399499439474149170107384347, −2.88865402562044063757349037555, −2.17218109573658863277235516895, −0.44195226567705230577551452762, 0.44195226567705230577551452762, 2.17218109573658863277235516895, 2.88865402562044063757349037555, 4.20399499439474149170107384347, 5.29651067929328791301669730589, 5.72343767940540964902386069380, 6.38378974759673878892223716281, 6.80491515938533496422999492068, 7.942983908237343800158790203026, 9.013954470174067706365170575390

Graph of the $Z$-function along the critical line