Properties

Label 2-2888-1.1-c1-0-47
Degree $2$
Conductor $2888$
Sign $1$
Analytic cond. $23.0607$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.146·3-s + 2.34·5-s + 3.83·7-s − 2.97·9-s + 3.34·11-s + 6.17·13-s − 0.342·15-s + 5.19·17-s − 0.560·21-s + 2.34·23-s + 0.489·25-s + 0.875·27-s + 0.0501·29-s − 3.43·31-s − 0.489·33-s + 8.97·35-s − 5.43·37-s − 0.903·39-s − 7.29·41-s − 8.86·43-s − 6.97·45-s + 10.7·47-s + 7.68·49-s − 0.760·51-s − 3.19·53-s + 7.83·55-s + 3.85·59-s + ⋯
L(s)  = 1  − 0.0845·3-s + 1.04·5-s + 1.44·7-s − 0.992·9-s + 1.00·11-s + 1.71·13-s − 0.0885·15-s + 1.26·17-s − 0.122·21-s + 0.488·23-s + 0.0978·25-s + 0.168·27-s + 0.00932·29-s − 0.617·31-s − 0.0851·33-s + 1.51·35-s − 0.894·37-s − 0.144·39-s − 1.13·41-s − 1.35·43-s − 1.04·45-s + 1.56·47-s + 1.09·49-s − 0.106·51-s − 0.439·53-s + 1.05·55-s + 0.501·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(23.0607\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2888,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.944193708\)
\(L(\frac12)\) \(\approx\) \(2.944193708\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 0.146T + 3T^{2} \)
5 \( 1 - 2.34T + 5T^{2} \)
7 \( 1 - 3.83T + 7T^{2} \)
11 \( 1 - 3.34T + 11T^{2} \)
13 \( 1 - 6.17T + 13T^{2} \)
17 \( 1 - 5.19T + 17T^{2} \)
23 \( 1 - 2.34T + 23T^{2} \)
29 \( 1 - 0.0501T + 29T^{2} \)
31 \( 1 + 3.43T + 31T^{2} \)
37 \( 1 + 5.43T + 37T^{2} \)
41 \( 1 + 7.29T + 41T^{2} \)
43 \( 1 + 8.86T + 43T^{2} \)
47 \( 1 - 10.7T + 47T^{2} \)
53 \( 1 + 3.19T + 53T^{2} \)
59 \( 1 - 3.85T + 59T^{2} \)
61 \( 1 - 2.92T + 61T^{2} \)
67 \( 1 + 11.5T + 67T^{2} \)
71 \( 1 - 1.48T + 71T^{2} \)
73 \( 1 + 7.68T + 73T^{2} \)
79 \( 1 - 0.175T + 79T^{2} \)
83 \( 1 + 7.00T + 83T^{2} \)
89 \( 1 + 13.5T + 89T^{2} \)
97 \( 1 + 3.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.617781758286401411401147026807, −8.338553062832413241488433992246, −7.24251204551751573295572654712, −6.28863265323901321591171644067, −5.65081038553404361773733689542, −5.17394061017284096222034441431, −3.98147961842964076630950390066, −3.13011180503176896545404690110, −1.76512126888006407099374772359, −1.25755954460316657228148922143, 1.25755954460316657228148922143, 1.76512126888006407099374772359, 3.13011180503176896545404690110, 3.98147961842964076630950390066, 5.17394061017284096222034441431, 5.65081038553404361773733689542, 6.28863265323901321591171644067, 7.24251204551751573295572654712, 8.338553062832413241488433992246, 8.617781758286401411401147026807

Graph of the $Z$-function along the critical line