Properties

Label 2-2888-1.1-c1-0-44
Degree $2$
Conductor $2888$
Sign $-1$
Analytic cond. $23.0607$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.11·3-s + 0.354·5-s + 0.325·7-s + 6.71·9-s + 5.04·11-s − 6.82·13-s − 1.10·15-s − 3.04·17-s − 1.01·21-s − 1.31·23-s − 4.87·25-s − 11.5·27-s + 2.78·29-s + 7.53·31-s − 15.7·33-s + 0.115·35-s + 5.42·37-s + 21.2·39-s − 7.90·41-s + 7.42·43-s + 2.38·45-s − 7.97·47-s − 6.89·49-s + 9.47·51-s + 9.11·53-s + 1.78·55-s + 7.72·59-s + ⋯
L(s)  = 1  − 1.79·3-s + 0.158·5-s + 0.122·7-s + 2.23·9-s + 1.52·11-s − 1.89·13-s − 0.285·15-s − 0.737·17-s − 0.221·21-s − 0.275·23-s − 0.974·25-s − 2.23·27-s + 0.517·29-s + 1.35·31-s − 2.73·33-s + 0.0195·35-s + 0.891·37-s + 3.40·39-s − 1.23·41-s + 1.13·43-s + 0.355·45-s − 1.16·47-s − 0.984·49-s + 1.32·51-s + 1.25·53-s + 0.241·55-s + 1.00·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(23.0607\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2888,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 3.11T + 3T^{2} \)
5 \( 1 - 0.354T + 5T^{2} \)
7 \( 1 - 0.325T + 7T^{2} \)
11 \( 1 - 5.04T + 11T^{2} \)
13 \( 1 + 6.82T + 13T^{2} \)
17 \( 1 + 3.04T + 17T^{2} \)
23 \( 1 + 1.31T + 23T^{2} \)
29 \( 1 - 2.78T + 29T^{2} \)
31 \( 1 - 7.53T + 31T^{2} \)
37 \( 1 - 5.42T + 37T^{2} \)
41 \( 1 + 7.90T + 41T^{2} \)
43 \( 1 - 7.42T + 43T^{2} \)
47 \( 1 + 7.97T + 47T^{2} \)
53 \( 1 - 9.11T + 53T^{2} \)
59 \( 1 - 7.72T + 59T^{2} \)
61 \( 1 + 0.534T + 61T^{2} \)
67 \( 1 - 6.27T + 67T^{2} \)
71 \( 1 + 12.4T + 71T^{2} \)
73 \( 1 - 5.67T + 73T^{2} \)
79 \( 1 - 9.78T + 79T^{2} \)
83 \( 1 + 6.93T + 83T^{2} \)
89 \( 1 - 3.44T + 89T^{2} \)
97 \( 1 + 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.323337500175457993964980094503, −7.30369201080617529009113571230, −6.66516706804080795120250027279, −6.21581034036405037707521478081, −5.27600964166947722497098347254, −4.62726983215374815386026643406, −4.01064645548768071466340204865, −2.36655553151113203789451081969, −1.22185678983706906606615602541, 0, 1.22185678983706906606615602541, 2.36655553151113203789451081969, 4.01064645548768071466340204865, 4.62726983215374815386026643406, 5.27600964166947722497098347254, 6.21581034036405037707521478081, 6.66516706804080795120250027279, 7.30369201080617529009113571230, 8.323337500175457993964980094503

Graph of the $Z$-function along the critical line