| L(s) = 1 | − 3.11·3-s + 0.354·5-s + 0.325·7-s + 6.71·9-s + 5.04·11-s − 6.82·13-s − 1.10·15-s − 3.04·17-s − 1.01·21-s − 1.31·23-s − 4.87·25-s − 11.5·27-s + 2.78·29-s + 7.53·31-s − 15.7·33-s + 0.115·35-s + 5.42·37-s + 21.2·39-s − 7.90·41-s + 7.42·43-s + 2.38·45-s − 7.97·47-s − 6.89·49-s + 9.47·51-s + 9.11·53-s + 1.78·55-s + 7.72·59-s + ⋯ |
| L(s) = 1 | − 1.79·3-s + 0.158·5-s + 0.122·7-s + 2.23·9-s + 1.52·11-s − 1.89·13-s − 0.285·15-s − 0.737·17-s − 0.221·21-s − 0.275·23-s − 0.974·25-s − 2.23·27-s + 0.517·29-s + 1.35·31-s − 2.73·33-s + 0.0195·35-s + 0.891·37-s + 3.40·39-s − 1.23·41-s + 1.13·43-s + 0.355·45-s − 1.16·47-s − 0.984·49-s + 1.32·51-s + 1.25·53-s + 0.241·55-s + 1.00·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
| good | 3 | \( 1 + 3.11T + 3T^{2} \) |
| 5 | \( 1 - 0.354T + 5T^{2} \) |
| 7 | \( 1 - 0.325T + 7T^{2} \) |
| 11 | \( 1 - 5.04T + 11T^{2} \) |
| 13 | \( 1 + 6.82T + 13T^{2} \) |
| 17 | \( 1 + 3.04T + 17T^{2} \) |
| 23 | \( 1 + 1.31T + 23T^{2} \) |
| 29 | \( 1 - 2.78T + 29T^{2} \) |
| 31 | \( 1 - 7.53T + 31T^{2} \) |
| 37 | \( 1 - 5.42T + 37T^{2} \) |
| 41 | \( 1 + 7.90T + 41T^{2} \) |
| 43 | \( 1 - 7.42T + 43T^{2} \) |
| 47 | \( 1 + 7.97T + 47T^{2} \) |
| 53 | \( 1 - 9.11T + 53T^{2} \) |
| 59 | \( 1 - 7.72T + 59T^{2} \) |
| 61 | \( 1 + 0.534T + 61T^{2} \) |
| 67 | \( 1 - 6.27T + 67T^{2} \) |
| 71 | \( 1 + 12.4T + 71T^{2} \) |
| 73 | \( 1 - 5.67T + 73T^{2} \) |
| 79 | \( 1 - 9.78T + 79T^{2} \) |
| 83 | \( 1 + 6.93T + 83T^{2} \) |
| 89 | \( 1 - 3.44T + 89T^{2} \) |
| 97 | \( 1 + 13.5T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.323337500175457993964980094503, −7.30369201080617529009113571230, −6.66516706804080795120250027279, −6.21581034036405037707521478081, −5.27600964166947722497098347254, −4.62726983215374815386026643406, −4.01064645548768071466340204865, −2.36655553151113203789451081969, −1.22185678983706906606615602541, 0,
1.22185678983706906606615602541, 2.36655553151113203789451081969, 4.01064645548768071466340204865, 4.62726983215374815386026643406, 5.27600964166947722497098347254, 6.21581034036405037707521478081, 6.66516706804080795120250027279, 7.30369201080617529009113571230, 8.323337500175457993964980094503