Properties

Label 2-2888-1.1-c1-0-41
Degree $2$
Conductor $2888$
Sign $-1$
Analytic cond. $23.0607$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87·3-s + 0.347·5-s − 4.75·7-s + 0.532·9-s + 4.75·11-s + 1.87·13-s − 0.652·15-s + 1.53·17-s + 8.94·21-s − 6.10·23-s − 4.87·25-s + 4.63·27-s + 1.98·29-s + 3.36·31-s − 8.94·33-s − 1.65·35-s + 3.38·37-s − 3.53·39-s + 4.49·41-s + 2.10·43-s + 0.184·45-s − 4.92·47-s + 15.6·49-s − 2.87·51-s + 12.5·53-s + 1.65·55-s − 5.66·59-s + ⋯
L(s)  = 1  − 1.08·3-s + 0.155·5-s − 1.79·7-s + 0.177·9-s + 1.43·11-s + 0.521·13-s − 0.168·15-s + 0.371·17-s + 1.95·21-s − 1.27·23-s − 0.975·25-s + 0.892·27-s + 0.368·29-s + 0.605·31-s − 1.55·33-s − 0.279·35-s + 0.557·37-s − 0.565·39-s + 0.701·41-s + 0.321·43-s + 0.0275·45-s − 0.717·47-s + 2.23·49-s − 0.403·51-s + 1.72·53-s + 0.222·55-s − 0.736·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(23.0607\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2888,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 1.87T + 3T^{2} \)
5 \( 1 - 0.347T + 5T^{2} \)
7 \( 1 + 4.75T + 7T^{2} \)
11 \( 1 - 4.75T + 11T^{2} \)
13 \( 1 - 1.87T + 13T^{2} \)
17 \( 1 - 1.53T + 17T^{2} \)
23 \( 1 + 6.10T + 23T^{2} \)
29 \( 1 - 1.98T + 29T^{2} \)
31 \( 1 - 3.36T + 31T^{2} \)
37 \( 1 - 3.38T + 37T^{2} \)
41 \( 1 - 4.49T + 41T^{2} \)
43 \( 1 - 2.10T + 43T^{2} \)
47 \( 1 + 4.92T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 + 5.66T + 59T^{2} \)
61 \( 1 - 9.99T + 61T^{2} \)
67 \( 1 + 10.5T + 67T^{2} \)
71 \( 1 + 11.4T + 71T^{2} \)
73 \( 1 + 14.6T + 73T^{2} \)
79 \( 1 + 2.36T + 79T^{2} \)
83 \( 1 + 11.5T + 83T^{2} \)
89 \( 1 + 5.63T + 89T^{2} \)
97 \( 1 + 7.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.578421672744156088252051352475, −7.37303248041090200257910981749, −6.57428916355476740976062191620, −6.00176020919290467996082861047, −5.81239313682952076637644364775, −4.33595985182479831217567862412, −3.71554757525713149617666034404, −2.71399180991414217572485245461, −1.18792361312193777263720358567, 0, 1.18792361312193777263720358567, 2.71399180991414217572485245461, 3.71554757525713149617666034404, 4.33595985182479831217567862412, 5.81239313682952076637644364775, 6.00176020919290467996082861047, 6.57428916355476740976062191620, 7.37303248041090200257910981749, 8.578421672744156088252051352475

Graph of the $Z$-function along the critical line