Properties

Label 2-2888-1.1-c1-0-31
Degree $2$
Conductor $2888$
Sign $1$
Analytic cond. $23.0607$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.45·3-s + 3.79·5-s − 3.95·7-s − 0.891·9-s − 2.06·11-s + 3.18·13-s + 5.50·15-s + 6.58·17-s − 5.74·21-s + 7.10·23-s + 9.37·25-s − 5.65·27-s − 3.19·29-s + 3.24·31-s − 3.00·33-s − 15.0·35-s + 0.364·37-s + 4.62·39-s + 11.3·41-s − 4.39·43-s − 3.37·45-s − 4.46·47-s + 8.66·49-s + 9.55·51-s + 4.70·53-s − 7.83·55-s + 10.3·59-s + ⋯
L(s)  = 1  + 0.838·3-s + 1.69·5-s − 1.49·7-s − 0.297·9-s − 0.623·11-s + 0.883·13-s + 1.42·15-s + 1.59·17-s − 1.25·21-s + 1.48·23-s + 1.87·25-s − 1.08·27-s − 0.592·29-s + 0.583·31-s − 0.522·33-s − 2.53·35-s + 0.0598·37-s + 0.740·39-s + 1.77·41-s − 0.670·43-s − 0.503·45-s − 0.652·47-s + 1.23·49-s + 1.33·51-s + 0.646·53-s − 1.05·55-s + 1.34·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(23.0607\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2888,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.979507159\)
\(L(\frac12)\) \(\approx\) \(2.979507159\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 - 1.45T + 3T^{2} \)
5 \( 1 - 3.79T + 5T^{2} \)
7 \( 1 + 3.95T + 7T^{2} \)
11 \( 1 + 2.06T + 11T^{2} \)
13 \( 1 - 3.18T + 13T^{2} \)
17 \( 1 - 6.58T + 17T^{2} \)
23 \( 1 - 7.10T + 23T^{2} \)
29 \( 1 + 3.19T + 29T^{2} \)
31 \( 1 - 3.24T + 31T^{2} \)
37 \( 1 - 0.364T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 + 4.39T + 43T^{2} \)
47 \( 1 + 4.46T + 47T^{2} \)
53 \( 1 - 4.70T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 6.96T + 61T^{2} \)
67 \( 1 + 1.11T + 67T^{2} \)
71 \( 1 - 10.9T + 71T^{2} \)
73 \( 1 - 1.44T + 73T^{2} \)
79 \( 1 + 4.72T + 79T^{2} \)
83 \( 1 + 4.04T + 83T^{2} \)
89 \( 1 - 2.77T + 89T^{2} \)
97 \( 1 - 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.047343081828218062699574480258, −8.161162011698685847456631924425, −7.22846791428792941920082324939, −6.31605726287311378143774906017, −5.81875115343979756452079793950, −5.17481804356893459967564937617, −3.58714888727795413600857877186, −3.00960168805064195539026222215, −2.35540086961771203370108501042, −1.06132744313796677867147785709, 1.06132744313796677867147785709, 2.35540086961771203370108501042, 3.00960168805064195539026222215, 3.58714888727795413600857877186, 5.17481804356893459967564937617, 5.81875115343979756452079793950, 6.31605726287311378143774906017, 7.22846791428792941920082324939, 8.161162011698685847456631924425, 9.047343081828218062699574480258

Graph of the $Z$-function along the critical line