Properties

Label 2-2888-1.1-c1-0-0
Degree $2$
Conductor $2888$
Sign $1$
Analytic cond. $23.0607$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.10·3-s − 1.81·5-s − 2.52·7-s + 1.42·9-s − 0.813·11-s − 4.33·13-s + 3.81·15-s − 0.916·17-s + 5.30·21-s − 1.81·23-s − 1.71·25-s + 3.31·27-s − 8.01·29-s − 9.30·31-s + 1.71·33-s + 4.57·35-s − 11.3·37-s + 9.12·39-s − 11.2·41-s + 9.96·43-s − 2.57·45-s − 5.64·47-s − 0.627·49-s + 1.92·51-s + 2.91·53-s + 1.47·55-s + 1.89·59-s + ⋯
L(s)  = 1  − 1.21·3-s − 0.811·5-s − 0.954·7-s + 0.473·9-s − 0.245·11-s − 1.20·13-s + 0.984·15-s − 0.222·17-s + 1.15·21-s − 0.378·23-s − 0.342·25-s + 0.638·27-s − 1.48·29-s − 1.67·31-s + 0.297·33-s + 0.773·35-s − 1.85·37-s + 1.46·39-s − 1.75·41-s + 1.51·43-s − 0.384·45-s − 0.823·47-s − 0.0896·49-s + 0.269·51-s + 0.400·53-s + 0.198·55-s + 0.246·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(23.0607\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2888,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.06866563932\)
\(L(\frac12)\) \(\approx\) \(0.06866563932\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 2.10T + 3T^{2} \)
5 \( 1 + 1.81T + 5T^{2} \)
7 \( 1 + 2.52T + 7T^{2} \)
11 \( 1 + 0.813T + 11T^{2} \)
13 \( 1 + 4.33T + 13T^{2} \)
17 \( 1 + 0.916T + 17T^{2} \)
23 \( 1 + 1.81T + 23T^{2} \)
29 \( 1 + 8.01T + 29T^{2} \)
31 \( 1 + 9.30T + 31T^{2} \)
37 \( 1 + 11.3T + 37T^{2} \)
41 \( 1 + 11.2T + 41T^{2} \)
43 \( 1 - 9.96T + 43T^{2} \)
47 \( 1 + 5.64T + 47T^{2} \)
53 \( 1 - 2.91T + 53T^{2} \)
59 \( 1 - 1.89T + 59T^{2} \)
61 \( 1 - 6.59T + 61T^{2} \)
67 \( 1 - 3.15T + 67T^{2} \)
71 \( 1 + 0.710T + 71T^{2} \)
73 \( 1 - 0.627T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 - 9.86T + 83T^{2} \)
89 \( 1 - 13.5T + 89T^{2} \)
97 \( 1 - 4.62T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.845845186564217396328418247166, −7.79578444146687154633985290496, −7.13010052319320668667941580425, −6.56627651566096033756357975462, −5.53936822567658684887672069347, −5.15481359527628758950317303555, −4.02530999882175080464096884737, −3.30930387187050434400058877868, −2.01346908494270965761317086639, −0.15983361109685320971249121864, 0.15983361109685320971249121864, 2.01346908494270965761317086639, 3.30930387187050434400058877868, 4.02530999882175080464096884737, 5.15481359527628758950317303555, 5.53936822567658684887672069347, 6.56627651566096033756357975462, 7.13010052319320668667941580425, 7.79578444146687154633985290496, 8.845845186564217396328418247166

Graph of the $Z$-function along the critical line