Properties

Label 2-2880-60.59-c1-0-37
Degree $2$
Conductor $2880$
Sign $0.895 + 0.445i$
Analytic cond. $22.9969$
Root an. cond. $4.79550$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.20 − 0.342i)5-s + 2.64·7-s + 3.00·11-s + 0.640i·13-s − 0.685·17-s − 5.28i·19-s − 2.27i·23-s + (4.76 − 1.51i)25-s − 8.15i·29-s + 2.96i·31-s + (5.83 − 0.905i)35-s − 1.60i·37-s + 7.42i·41-s + 11.2·43-s − 4.19i·47-s + ⋯
L(s)  = 1  + (0.988 − 0.153i)5-s + 0.997·7-s + 0.906·11-s + 0.177i·13-s − 0.166·17-s − 1.21i·19-s − 0.474i·23-s + (0.952 − 0.303i)25-s − 1.51i·29-s + 0.533i·31-s + (0.986 − 0.152i)35-s − 0.264i·37-s + 1.15i·41-s + 1.71·43-s − 0.612i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 + 0.445i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.895 + 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
Sign: $0.895 + 0.445i$
Analytic conductor: \(22.9969\)
Root analytic conductor: \(4.79550\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2880} (2879, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2880,\ (\ :1/2),\ 0.895 + 0.445i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.732724758\)
\(L(\frac12)\) \(\approx\) \(2.732724758\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-2.20 + 0.342i)T \)
good7 \( 1 - 2.64T + 7T^{2} \)
11 \( 1 - 3.00T + 11T^{2} \)
13 \( 1 - 0.640iT - 13T^{2} \)
17 \( 1 + 0.685T + 17T^{2} \)
19 \( 1 + 5.28iT - 19T^{2} \)
23 \( 1 + 2.27iT - 23T^{2} \)
29 \( 1 + 8.15iT - 29T^{2} \)
31 \( 1 - 2.96iT - 31T^{2} \)
37 \( 1 + 1.60iT - 37T^{2} \)
41 \( 1 - 7.42iT - 41T^{2} \)
43 \( 1 - 11.2T + 43T^{2} \)
47 \( 1 + 4.19iT - 47T^{2} \)
53 \( 1 + 9.60T + 53T^{2} \)
59 \( 1 - 7.20T + 59T^{2} \)
61 \( 1 + 10.4T + 61T^{2} \)
67 \( 1 - 8.49T + 67T^{2} \)
71 \( 1 + 13.1T + 71T^{2} \)
73 \( 1 - 14.2iT - 73T^{2} \)
79 \( 1 - 11.4iT - 79T^{2} \)
83 \( 1 + 13.1iT - 83T^{2} \)
89 \( 1 - 10.2iT - 89T^{2} \)
97 \( 1 + 8.31iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.791324142767204536798089929658, −8.092325896135811255601165269355, −7.10605395417471378135349465711, −6.41185745116521021537964015747, −5.67975023172634191544522005424, −4.74473324926951594370787607554, −4.24028664112230296817927307565, −2.81199175979695544945971706135, −1.96058825722020031659930273070, −0.987573214026886310736744210539, 1.31374091801421371347929113971, 1.92078513990209798930461967261, 3.14438340215950676261803416246, 4.14114493689128819646629620464, 5.05026234379410658337502111744, 5.78024856719281425701503982358, 6.43650000358491004979409570266, 7.36863734616770556719947265561, 8.046547900400070979275918699481, 9.029597251602353855697909173887

Graph of the $Z$-function along the critical line