# Properties

 Label 2-2880-60.23-c0-0-2 Degree $2$ Conductor $2880$ Sign $0.749 + 0.662i$ Analytic cond. $1.43730$ Root an. cond. $1.19887$ Motivic weight $0$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (0.707 − 0.707i)5-s + (−1 − i)13-s + (1.41 + 1.41i)17-s − 1.00i·25-s + 1.41·29-s + (1 − i)37-s − 1.41i·41-s − i·49-s + (−1.41 + 1.41i)53-s − 1.41·65-s + (−1 − i)73-s + 2.00·85-s + 1.41·89-s + (−1 + i)97-s + 1.41i·101-s + ⋯
 L(s)  = 1 + (0.707 − 0.707i)5-s + (−1 − i)13-s + (1.41 + 1.41i)17-s − 1.00i·25-s + 1.41·29-s + (1 − i)37-s − 1.41i·41-s − i·49-s + (−1.41 + 1.41i)53-s − 1.41·65-s + (−1 − i)73-s + 2.00·85-s + 1.41·89-s + (−1 + i)97-s + 1.41i·101-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$2880$$    =    $$2^{6} \cdot 3^{2} \cdot 5$$ Sign: $0.749 + 0.662i$ Analytic conductor: $$1.43730$$ Root analytic conductor: $$1.19887$$ Motivic weight: $$0$$ Rational: no Arithmetic: yes Character: $\chi_{2880} (2303, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 2880,\ (\ :0),\ 0.749 + 0.662i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$1.403671547$$ $$L(\frac12)$$ $$\approx$$ $$1.403671547$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
5 $$1 + (-0.707 + 0.707i)T$$
good7 $$1 + iT^{2}$$
11 $$1 + T^{2}$$
13 $$1 + (1 + i)T + iT^{2}$$
17 $$1 + (-1.41 - 1.41i)T + iT^{2}$$
19 $$1 + T^{2}$$
23 $$1 + iT^{2}$$
29 $$1 - 1.41T + T^{2}$$
31 $$1 - T^{2}$$
37 $$1 + (-1 + i)T - iT^{2}$$
41 $$1 + 1.41iT - T^{2}$$
43 $$1 - iT^{2}$$
47 $$1 - iT^{2}$$
53 $$1 + (1.41 - 1.41i)T - iT^{2}$$
59 $$1 - T^{2}$$
61 $$1 + T^{2}$$
67 $$1 + iT^{2}$$
71 $$1 + T^{2}$$
73 $$1 + (1 + i)T + iT^{2}$$
79 $$1 + T^{2}$$
83 $$1 + iT^{2}$$
89 $$1 - 1.41T + T^{2}$$
97 $$1 + (1 - i)T - iT^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$