Properties

Label 2-2880-5.4-c1-0-55
Degree $2$
Conductor $2880$
Sign $-0.894 - 0.447i$
Analytic cond. $22.9969$
Root an. cond. $4.79550$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 − i)5-s − 4i·7-s − 4·11-s − 4i·13-s − 6i·17-s + 4·19-s − 4i·23-s + (3 + 4i)25-s − 4·29-s + (−4 + 8i)35-s + 4i·37-s + 8·41-s + 12i·47-s − 9·49-s − 2i·53-s + ⋯
L(s)  = 1  + (−0.894 − 0.447i)5-s − 1.51i·7-s − 1.20·11-s − 1.10i·13-s − 1.45i·17-s + 0.917·19-s − 0.834i·23-s + (0.600 + 0.800i)25-s − 0.742·29-s + (−0.676 + 1.35i)35-s + 0.657i·37-s + 1.24·41-s + 1.75i·47-s − 1.28·49-s − 0.274i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(22.9969\)
Root analytic conductor: \(4.79550\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2880} (1729, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2880,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6543157256\)
\(L(\frac12)\) \(\approx\) \(0.6543157256\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (2 + i)T \)
good7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 - 8T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 - 12iT - 47T^{2} \)
53 \( 1 + 2iT - 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 16iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 8iT - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.978546430325502216157461695627, −7.62367486874556955243547348235, −7.24312746076055942709068405075, −6.00054360703214209432234930621, −4.91872394632157759872463135633, −4.59963128567168788112929423962, −3.43762370323646555213323837738, −2.82850980720148956160380265430, −1.01009861874939604786914291011, −0.24569304183740077259754034444, 1.81178749622729775066131397465, 2.69508607498131347000657334982, 3.57508696283931694946623964982, 4.48302779728625038791681746606, 5.54583389924879965641187452760, 5.96378065035739271085672422017, 7.11283471984395898066137506535, 7.68960445231581864247947747936, 8.487461283048842591902316166351, 9.024194744153206254052796956394

Graph of the $Z$-function along the critical line