L(s) = 1 | + (0.965 − 0.258i)3-s + (0.866 + 0.5i)5-s + (−0.448 + 0.258i)7-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)15-s + (−0.366 + 0.366i)21-s + (−0.965 + 1.67i)23-s + (0.499 + 0.866i)25-s + (0.707 − 0.707i)27-s + (1.5 − 0.866i)29-s − 0.517·35-s + (−0.866 − 0.5i)41-s + (1.22 − 0.707i)43-s + 45-s + (−0.258 − 0.448i)47-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)3-s + (0.866 + 0.5i)5-s + (−0.448 + 0.258i)7-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)15-s + (−0.366 + 0.366i)21-s + (−0.965 + 1.67i)23-s + (0.499 + 0.866i)25-s + (0.707 − 0.707i)27-s + (1.5 − 0.866i)29-s − 0.517·35-s + (−0.866 − 0.5i)41-s + (1.22 − 0.707i)43-s + 45-s + (−0.258 − 0.448i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.961358181\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.961358181\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
good | 7 | \( 1 + (0.448 - 0.258i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.965 - 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.258 + 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.67 + 0.965i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - 1.73iT - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.154388512506697609785969649069, −8.176070585181918332949646355660, −7.55642678759081206090927163604, −6.66439053003908274560618539892, −6.13026734662188961093523387493, −5.20752007966247434871827305547, −4.00431419594676686278454369245, −3.18229935305726086906130503203, −2.41245072069825202993507061223, −1.53439041674574489341111174240,
1.31646237236159733695657026765, 2.42862251741503901800628226426, 3.13027967074366631860804573644, 4.33498417993268552585678512277, 4.78910190551763356074877052522, 5.99952391547570540233086379811, 6.61845126291664423633590312175, 7.53641863627215697060135151058, 8.481442252099955315905773241491, 8.805610825052958731109797439918