L(s) = 1 | − 5-s + 25-s + 2·29-s + 2·41-s − 49-s + 2·61-s − 2·89-s + 2·101-s + 2·109-s + ⋯ |
L(s) = 1 | − 5-s + 25-s + 2·29-s + 2·41-s − 49-s + 2·61-s − 2·89-s + 2·101-s + 2·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.021270862\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.021270862\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( ( 1 - T )^{2} \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 + T )^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.747109020645146241067807094402, −8.244972095725996922240332460033, −7.48749522557563405723087764915, −6.78696642123288121277914585054, −5.97228156561733104924169586111, −4.89819154702732173523668456399, −4.27801326148291986573619654185, −3.36821152264418884516930075847, −2.47915149575835169695364294516, −0.938223458969756128047204406514,
0.938223458969756128047204406514, 2.47915149575835169695364294516, 3.36821152264418884516930075847, 4.27801326148291986573619654185, 4.89819154702732173523668456399, 5.97228156561733104924169586111, 6.78696642123288121277914585054, 7.48749522557563405723087764915, 8.244972095725996922240332460033, 8.747109020645146241067807094402