Properties

Label 2-2880-1.1-c1-0-33
Degree $2$
Conductor $2880$
Sign $-1$
Analytic cond. $22.9969$
Root an. cond. $4.79550$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s + 2·11-s − 4·13-s + 2·17-s − 4·19-s − 8·23-s + 25-s − 10·29-s + 4·31-s − 2·35-s + 8·43-s − 8·47-s − 3·49-s + 6·53-s − 2·55-s − 14·59-s + 14·61-s + 4·65-s + 4·67-s − 12·71-s + 6·73-s + 4·77-s − 12·79-s + 4·83-s − 2·85-s + 12·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.755·7-s + 0.603·11-s − 1.10·13-s + 0.485·17-s − 0.917·19-s − 1.66·23-s + 1/5·25-s − 1.85·29-s + 0.718·31-s − 0.338·35-s + 1.21·43-s − 1.16·47-s − 3/7·49-s + 0.824·53-s − 0.269·55-s − 1.82·59-s + 1.79·61-s + 0.496·65-s + 0.488·67-s − 1.42·71-s + 0.702·73-s + 0.455·77-s − 1.35·79-s + 0.439·83-s − 0.216·85-s + 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(22.9969\)
Root analytic conductor: \(4.79550\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2880} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2880,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.177735510636912404093715069618, −7.79979523582491151568952175531, −6.98865086758663648112324447119, −6.08823170975999641178845307383, −5.25494085780447371206947501442, −4.35719700865609900059773798869, −3.79057490301116406348088551581, −2.49538158301161918022879918142, −1.58792070167940625124508980254, 0, 1.58792070167940625124508980254, 2.49538158301161918022879918142, 3.79057490301116406348088551581, 4.35719700865609900059773798869, 5.25494085780447371206947501442, 6.08823170975999641178845307383, 6.98865086758663648112324447119, 7.79979523582491151568952175531, 8.177735510636912404093715069618

Graph of the $Z$-function along the critical line