L(s) = 1 | + (−1 − 1.73i)2-s + (−0.5 − 0.866i)3-s + (−0.999 + 1.73i)4-s + (0.5 + 0.866i)5-s + (−0.999 + 1.73i)6-s − 2·7-s + (−0.499 + 0.866i)9-s + (0.999 − 1.73i)10-s − 3·11-s + 1.99·12-s + (−3 + 5.19i)13-s + (2 + 3.46i)14-s + (0.499 − 0.866i)15-s + (1.99 + 3.46i)16-s + (−3 − 5.19i)17-s + 1.99·18-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.288 − 0.499i)3-s + (−0.499 + 0.866i)4-s + (0.223 + 0.387i)5-s + (−0.408 + 0.707i)6-s − 0.755·7-s + (−0.166 + 0.288i)9-s + (0.316 − 0.547i)10-s − 0.904·11-s + 0.577·12-s + (−0.832 + 1.44i)13-s + (0.534 + 0.925i)14-s + (0.129 − 0.223i)15-s + (0.499 + 0.866i)16-s + (−0.727 − 1.26i)17-s + 0.471·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (3.5 - 2.59i)T \) |
good | 2 | \( 1 + (1 + 1.73i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 + (3 - 5.19i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-4 + 6.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.5 - 6.06i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 9T + 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5 + 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2 - 3.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (7 - 12.1i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.5 + 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.5 + 6.06i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.5 + 4.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (1.5 - 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6 - 10.3i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98736794779768087415666667552, −10.32776115212624264008329999657, −9.423290489395488255228182447854, −8.601920224152026676854597448667, −7.11203936558606311489231782150, −6.38110975283015426625228134665, −4.74765612346183049747446150585, −2.96082758001508475377852847490, −2.08658067997107687672058176598, 0,
3.02371113009014549865396421030, 4.85758787905193926360500455544, 5.78268758879400743688009078343, 6.63694526306519805057173474227, 7.86714648183370700147441033604, 8.544249894031179165270497702281, 9.754558477423477865376608101697, 10.13064529512781838969351215215, 11.44041867504039776305930414875