L(s) = 1 | + (1.34 + 2.33i)2-s + (0.5 + 0.866i)3-s + (−2.62 + 4.54i)4-s + (−0.5 − 0.866i)5-s + (−1.34 + 2.33i)6-s − 0.797·7-s − 8.73·8-s + (−0.499 + 0.866i)9-s + (1.34 − 2.33i)10-s + 2.59·11-s − 5.24·12-s + (1.39 − 2.42i)13-s + (−1.07 − 1.85i)14-s + (0.499 − 0.866i)15-s + (−6.50 − 11.2i)16-s + (2.88 + 4.99i)17-s + ⋯ |
L(s) = 1 | + (0.951 + 1.64i)2-s + (0.288 + 0.499i)3-s + (−1.31 + 2.27i)4-s + (−0.223 − 0.387i)5-s + (−0.549 + 0.951i)6-s − 0.301·7-s − 3.08·8-s + (−0.166 + 0.288i)9-s + (0.425 − 0.737i)10-s + 0.781·11-s − 1.51·12-s + (0.387 − 0.671i)13-s + (−0.286 − 0.496i)14-s + (0.129 − 0.223i)15-s + (−1.62 − 2.81i)16-s + (0.700 + 1.21i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.134497 + 1.93034i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.134497 + 1.93034i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-2.45 - 3.60i)T \) |
good | 2 | \( 1 + (-1.34 - 2.33i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + 0.797T + 7T^{2} \) |
| 11 | \( 1 - 2.59T + 11T^{2} \) |
| 13 | \( 1 + (-1.39 + 2.42i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.88 - 4.99i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.55 + 2.68i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.39 + 4.14i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.48T + 31T^{2} \) |
| 37 | \( 1 - 7.69T + 37T^{2} \) |
| 41 | \( 1 + (3.69 + 6.39i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.39 - 2.42i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.53 + 9.59i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.43 + 7.68i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.540 + 0.935i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.03 - 3.52i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.88 - 11.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.98 - 10.3i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.25 + 7.36i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.24 + 5.61i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2.79T + 83T^{2} \) |
| 89 | \( 1 + (-6.67 + 11.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.69415200299867101792125005337, −11.75970025691154879328978152878, −10.15654784872693856444817381630, −8.947699807452508867294113079090, −8.256676196368136119079200535230, −7.36680119880534778790362773524, −6.12029108481249276253445540752, −5.42261706731170238731181467474, −4.10886318487099630596364453985, −3.47550689023340287357751285575,
1.25537222928099087428126062685, 2.78325345107675534957266359408, 3.61162889077887765419403512765, 4.86246996830041606712034420148, 6.14258442082496962963217172714, 7.30027938481784856662981426132, 9.163157992671167921708902179290, 9.516399748202114159008220827529, 10.91786474954719103009895158835, 11.50458905630007893045012711791