L(s) = 1 | + (−1.20 − 2.09i)2-s + (0.5 + 0.866i)3-s + (−1.91 + 3.31i)4-s + (0.5 + 0.866i)5-s + (1.20 − 2.09i)6-s − 3.82·7-s + 4.41·8-s + (−0.499 + 0.866i)9-s + (1.20 − 2.09i)10-s + 2.82·11-s − 3.82·12-s + (−1.91 + 3.31i)13-s + (4.62 + 8.00i)14-s + (−0.499 + 0.866i)15-s + (−1.49 − 2.59i)16-s + (3.41 + 5.91i)17-s + ⋯ |
L(s) = 1 | + (−0.853 − 1.47i)2-s + (0.288 + 0.499i)3-s + (−0.957 + 1.65i)4-s + (0.223 + 0.387i)5-s + (0.492 − 0.853i)6-s − 1.44·7-s + 1.56·8-s + (−0.166 + 0.288i)9-s + (0.381 − 0.661i)10-s + 0.852·11-s − 1.10·12-s + (−0.530 + 0.919i)13-s + (1.23 + 2.13i)14-s + (−0.129 + 0.223i)15-s + (−0.374 − 0.649i)16-s + (0.828 + 1.43i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.627494 + 0.135618i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.627494 + 0.135618i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-4 - 1.73i)T \) |
good | 2 | \( 1 + (1.20 + 2.09i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + 3.82T + 7T^{2} \) |
| 11 | \( 1 - 2.82T + 11T^{2} \) |
| 13 | \( 1 + (1.91 - 3.31i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.41 - 5.91i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (2.41 - 4.18i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.828 + 1.43i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 5T + 31T^{2} \) |
| 37 | \( 1 + 7.82T + 37T^{2} \) |
| 41 | \( 1 + (-1.41 - 2.44i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.08 + 1.88i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.41 + 7.64i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 + 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.15 - 12.3i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.74 + 9.94i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5 + 8.66i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.74 - 6.48i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.32 - 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8T + 83T^{2} \) |
| 89 | \( 1 + (-2.24 + 3.88i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3 - 5.19i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85284537712547790846711146360, −10.69016263288119220354999580673, −9.854015220012553664062158910214, −9.554119066052589656208921892721, −8.624376751737401864417724159078, −7.25369428120164197946998489691, −5.93176973212319772889184512126, −3.83022655100526189477527971678, −3.33620189312162287666657318407, −1.83446124223657995218546554359,
0.62688325020116033969017506592, 3.13314731433638830095454856736, 5.18213437904242541020277990687, 6.13782312693259007017630299683, 7.02607939682509670102950005724, 7.67873442247091151783772898953, 8.943927970887545696959726527177, 9.447689955570824781350772477656, 10.19543432613413662953580693655, 12.02883543127001932954314830310