L(s) = 1 | + (0.823 − 1.42i)2-s + (0.5 − 0.866i)3-s + (−0.355 − 0.616i)4-s + (−0.5 + 0.866i)5-s + (−0.823 − 1.42i)6-s + 4.47·7-s + 2.12·8-s + (−0.499 − 0.866i)9-s + (0.823 + 1.42i)10-s − 3.44·11-s − 0.711·12-s + (−1.23 − 2.14i)13-s + (3.68 − 6.38i)14-s + (0.499 + 0.866i)15-s + (2.45 − 4.25i)16-s + (−3.81 + 6.60i)17-s + ⋯ |
L(s) = 1 | + (0.582 − 1.00i)2-s + (0.288 − 0.499i)3-s + (−0.177 − 0.308i)4-s + (−0.223 + 0.387i)5-s + (−0.336 − 0.582i)6-s + 1.69·7-s + 0.750·8-s + (−0.166 − 0.288i)9-s + (0.260 + 0.450i)10-s − 1.03·11-s − 0.205·12-s + (−0.343 − 0.595i)13-s + (0.985 − 1.70i)14-s + (0.129 + 0.223i)15-s + (0.614 − 1.06i)16-s + (−0.925 + 1.60i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.167 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.167 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56662 - 1.32225i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56662 - 1.32225i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (3.67 + 2.34i)T \) |
good | 2 | \( 1 + (-0.823 + 1.42i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 - 4.47T + 7T^{2} \) |
| 11 | \( 1 + 3.44T + 11T^{2} \) |
| 13 | \( 1 + (1.23 + 2.14i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.81 - 6.60i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.93 + 3.35i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.36 - 7.56i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 0.422T + 31T^{2} \) |
| 37 | \( 1 - 3.90T + 37T^{2} \) |
| 41 | \( 1 + (2.64 - 4.58i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.23 - 2.14i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.338 - 0.586i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.74 + 9.95i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.26 + 7.38i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.10 + 7.10i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.81 - 8.34i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.92 + 3.33i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (8.39 - 14.5i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.06 - 10.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 2.03T + 83T^{2} \) |
| 89 | \( 1 + (-1.57 - 2.72i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53474361046311750747017867908, −10.88912206209433786795643896734, −10.33934182207109868267802008707, −8.280343834159096355480794343882, −8.106327373668018987600072741612, −6.78196149569131953577440051111, −5.12785441925422112169156265582, −4.22529560552548679887262817609, −2.73365662766199425364232749833, −1.78824925461140334434166787551,
2.14996073875566403962793464160, 4.45379776604968537275642797750, 4.74350920747302401701508932932, 5.81782966204360428695486092271, 7.35587583783416384181053622834, 7.940500840805366092478421042990, 8.873140809791690877655481242755, 10.22038720886826779559021306049, 11.15040424966026167953098096241, 11.96197388617701526746606014645