L(s) = 1 | + (0.809 − 1.40i)2-s + (−0.5 + 0.866i)3-s + (−0.309 − 0.535i)4-s + (0.5 − 0.866i)5-s + (0.809 + 1.40i)6-s + 0.763·7-s + 2.23·8-s + (−0.499 − 0.866i)9-s + (−0.809 − 1.40i)10-s + 2·11-s + 0.618·12-s + (0.618 + 1.07i)13-s + (0.618 − 1.07i)14-s + (0.499 + 0.866i)15-s + (2.42 − 4.20i)16-s + (1.73 − 3.00i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.990i)2-s + (−0.288 + 0.499i)3-s + (−0.154 − 0.267i)4-s + (0.223 − 0.387i)5-s + (0.330 + 0.572i)6-s + 0.288·7-s + 0.790·8-s + (−0.166 − 0.288i)9-s + (−0.255 − 0.443i)10-s + 0.603·11-s + 0.178·12-s + (0.171 + 0.296i)13-s + (0.165 − 0.286i)14-s + (0.129 + 0.223i)15-s + (0.606 − 1.05i)16-s + (0.421 − 0.729i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.636 + 0.771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.636 + 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62534 - 0.766434i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62534 - 0.766434i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (4.35 + 0.204i)T \) |
good | 2 | \( 1 + (-0.809 + 1.40i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 - 0.763T + 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + (-0.618 - 1.07i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.73 + 3.00i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.23 - 2.14i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.381 - 0.661i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 8.23T + 31T^{2} \) |
| 37 | \( 1 - 2.47T + 37T^{2} \) |
| 41 | \( 1 + (3.85 - 6.67i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.85 - 10.1i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.881 + 1.52i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.23 + 10.8i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.61 - 2.80i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.61 - 7.99i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.76 + 3.05i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 15.1T + 83T^{2} \) |
| 89 | \( 1 + (1.76 + 3.05i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 + 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53669328350858688176989978817, −11.12476806793919024887274025901, −9.999713782578083179177415430791, −9.181433715806248876277026246620, −7.937809060689194333426282631233, −6.57934841499946031168061867119, −5.18746264403366801942128825350, −4.35420026792377673070919680981, −3.23842223531826032940848586930, −1.63366828595662991941589548408,
1.80962384155512714388489781537, 3.85740204545013001073642925246, 5.19541254785176194030133219069, 6.11064985672256352693027405920, 6.82351783077576913782327627009, 7.76171524697917873060628262071, 8.783976315784198986782026817104, 10.34274227187046856232574713029, 10.95308484515876698129623255331, 12.17381318460697289210433987898