Properties

Label 2-285-19.11-c1-0-10
Degree $2$
Conductor $285$
Sign $-0.658 + 0.752i$
Analytic cond. $2.27573$
Root an. cond. $1.50855$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − 1.73i)2-s + (0.5 − 0.866i)3-s + (−0.999 − 1.73i)4-s + (0.5 − 0.866i)5-s + (−0.999 − 1.73i)6-s − 2·7-s + (−0.499 − 0.866i)9-s + (−0.999 − 1.73i)10-s + 11-s − 1.99·12-s + (−1 − 1.73i)13-s + (−2 + 3.46i)14-s + (−0.499 − 0.866i)15-s + (1.99 − 3.46i)16-s + (−1 + 1.73i)17-s − 1.99·18-s + ⋯
L(s)  = 1  + (0.707 − 1.22i)2-s + (0.288 − 0.499i)3-s + (−0.499 − 0.866i)4-s + (0.223 − 0.387i)5-s + (−0.408 − 0.707i)6-s − 0.755·7-s + (−0.166 − 0.288i)9-s + (−0.316 − 0.547i)10-s + 0.301·11-s − 0.577·12-s + (−0.277 − 0.480i)13-s + (−0.534 + 0.925i)14-s + (−0.129 − 0.223i)15-s + (0.499 − 0.866i)16-s + (−0.242 + 0.420i)17-s − 0.471·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.658 + 0.752i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.658 + 0.752i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $-0.658 + 0.752i$
Analytic conductor: \(2.27573\)
Root analytic conductor: \(1.50855\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{285} (106, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :1/2),\ -0.658 + 0.752i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.808678 - 1.78345i\)
\(L(\frac12)\) \(\approx\) \(0.808678 - 1.78345i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.5 + 0.866i)T \)
5 \( 1 + (-0.5 + 0.866i)T \)
19 \( 1 + (-0.5 - 4.33i)T \)
good2 \( 1 + (-1 + 1.73i)T + (-1 - 1.73i)T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - T + 11T^{2} \)
13 \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \)
23 \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 9T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 + (3 - 5.19i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-5 + 8.66i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-1 - 1.73i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (3.5 - 6.06i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (4 + 6.92i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (1.5 - 2.59i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-1 + 1.73i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-5.5 + 9.52i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + (7.5 + 12.9i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (4 - 6.92i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.93696717434466127438971427028, −10.59004637505799710566969515085, −9.910908038325248261984370336318, −8.823268492205497817692326779418, −7.62215301032654969398137388535, −6.35392494596635930365160337874, −5.13903439692708512630776699117, −3.79557217055336642956445750817, −2.81806558401859571988235238245, −1.39979474596827242053889525407, 2.79162727271473692132161533456, 4.19230080735664690705498155337, 5.11183917912864208719460375644, 6.44140976779586295962524123115, 6.87269569677938404522904086291, 8.149573713843049867930795382755, 9.249830612000781248658361048083, 10.12559445741482174879000747059, 11.21198045734166541035629071582, 12.46209941022812208600273517696

Graph of the $Z$-function along the critical line