Properties

Label 2-285-15.2-c1-0-19
Degree $2$
Conductor $285$
Sign $0.939 - 0.343i$
Analytic cond. $2.27573$
Root an. cond. $1.50855$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0580 − 0.0580i)2-s + (1.62 − 0.605i)3-s + 1.99i·4-s + (1.89 + 1.18i)5-s + (0.0590 − 0.129i)6-s + (−2.14 − 2.14i)7-s + (0.231 + 0.231i)8-s + (2.26 − 1.96i)9-s + (0.178 − 0.0409i)10-s + 4.16i·11-s + (1.20 + 3.23i)12-s + (2.98 − 2.98i)13-s − 0.248·14-s + (3.79 + 0.782i)15-s − 3.95·16-s + (−1.86 + 1.86i)17-s + ⋯
L(s)  = 1  + (0.0410 − 0.0410i)2-s + (0.936 − 0.349i)3-s + 0.996i·4-s + (0.847 + 0.531i)5-s + (0.0241 − 0.0527i)6-s + (−0.810 − 0.810i)7-s + (0.0819 + 0.0819i)8-s + (0.755 − 0.654i)9-s + (0.0565 − 0.0129i)10-s + 1.25i·11-s + (0.348 + 0.933i)12-s + (0.828 − 0.828i)13-s − 0.0665·14-s + (0.979 + 0.202i)15-s − 0.989·16-s + (−0.451 + 0.451i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.343i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.343i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $0.939 - 0.343i$
Analytic conductor: \(2.27573\)
Root analytic conductor: \(1.50855\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{285} (77, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :1/2),\ 0.939 - 0.343i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.82149 + 0.322177i\)
\(L(\frac12)\) \(\approx\) \(1.82149 + 0.322177i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.62 + 0.605i)T \)
5 \( 1 + (-1.89 - 1.18i)T \)
19 \( 1 - iT \)
good2 \( 1 + (-0.0580 + 0.0580i)T - 2iT^{2} \)
7 \( 1 + (2.14 + 2.14i)T + 7iT^{2} \)
11 \( 1 - 4.16iT - 11T^{2} \)
13 \( 1 + (-2.98 + 2.98i)T - 13iT^{2} \)
17 \( 1 + (1.86 - 1.86i)T - 17iT^{2} \)
23 \( 1 + (5.35 + 5.35i)T + 23iT^{2} \)
29 \( 1 - 5.48T + 29T^{2} \)
31 \( 1 + 0.743T + 31T^{2} \)
37 \( 1 + (3.93 + 3.93i)T + 37iT^{2} \)
41 \( 1 + 7.30iT - 41T^{2} \)
43 \( 1 + (-2.54 + 2.54i)T - 43iT^{2} \)
47 \( 1 + (4.88 - 4.88i)T - 47iT^{2} \)
53 \( 1 + (1.58 + 1.58i)T + 53iT^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 + 5.26T + 61T^{2} \)
67 \( 1 + (-1.58 - 1.58i)T + 67iT^{2} \)
71 \( 1 - 7.97iT - 71T^{2} \)
73 \( 1 + (-3.09 + 3.09i)T - 73iT^{2} \)
79 \( 1 - 4.68iT - 79T^{2} \)
83 \( 1 + (-0.803 - 0.803i)T + 83iT^{2} \)
89 \( 1 + 7.94T + 89T^{2} \)
97 \( 1 + (-11.4 - 11.4i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41767793406045803148453044754, −10.64263454598469743391126753574, −10.01321776999116102843108229823, −8.973920379447591834735495982511, −7.966808572533178113013537997550, −7.04767123653003177995243841639, −6.34113251995174661469439555534, −4.23429730449719664117949050222, −3.27760570527668434440126448053, −2.13143889361545026500676578335, 1.68990396914583595082848428620, 3.07692535429364163910486554873, 4.65836533257688904774554323079, 5.85585171248592819339133979502, 6.49839763709456702477917514082, 8.357624245190757953023617175151, 9.165860366401651791417694967224, 9.574349197924113906283638030157, 10.58377078091779079204365162344, 11.69191366859531671450175500334

Graph of the $Z$-function along the critical line