L(s) = 1 | + (0.913 − 0.913i)2-s + (1.44 + 0.951i)3-s + 0.331i·4-s + (−2.10 + 0.765i)5-s + (2.19 − 0.452i)6-s + (0.194 + 0.194i)7-s + (2.12 + 2.12i)8-s + (1.18 + 2.75i)9-s + (−1.21 + 2.61i)10-s − 0.417i·11-s + (−0.315 + 0.480i)12-s + (4.34 − 4.34i)13-s + 0.356·14-s + (−3.76 − 0.891i)15-s + 3.22·16-s + (−1.75 + 1.75i)17-s + ⋯ |
L(s) = 1 | + (0.645 − 0.645i)2-s + (0.835 + 0.549i)3-s + 0.165i·4-s + (−0.939 + 0.342i)5-s + (0.894 − 0.184i)6-s + (0.0736 + 0.0736i)7-s + (0.752 + 0.752i)8-s + (0.395 + 0.918i)9-s + (−0.385 + 0.827i)10-s − 0.125i·11-s + (−0.0912 + 0.138i)12-s + (1.20 − 1.20i)13-s + 0.0951·14-s + (−0.973 − 0.230i)15-s + 0.806·16-s + (−0.426 + 0.426i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 - 0.315i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.948 - 0.315i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.04503 + 0.331274i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.04503 + 0.331274i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.44 - 0.951i)T \) |
| 5 | \( 1 + (2.10 - 0.765i)T \) |
| 19 | \( 1 + iT \) |
good | 2 | \( 1 + (-0.913 + 0.913i)T - 2iT^{2} \) |
| 7 | \( 1 + (-0.194 - 0.194i)T + 7iT^{2} \) |
| 11 | \( 1 + 0.417iT - 11T^{2} \) |
| 13 | \( 1 + (-4.34 + 4.34i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.75 - 1.75i)T - 17iT^{2} \) |
| 23 | \( 1 + (3.99 + 3.99i)T + 23iT^{2} \) |
| 29 | \( 1 + 7.49T + 29T^{2} \) |
| 31 | \( 1 + 1.04T + 31T^{2} \) |
| 37 | \( 1 + (3.18 + 3.18i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.47iT - 41T^{2} \) |
| 43 | \( 1 + (-1.64 + 1.64i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.22 + 6.22i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7.09 - 7.09i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.72T + 59T^{2} \) |
| 61 | \( 1 - 0.494T + 61T^{2} \) |
| 67 | \( 1 + (0.00945 + 0.00945i)T + 67iT^{2} \) |
| 71 | \( 1 + 6.32iT - 71T^{2} \) |
| 73 | \( 1 + (10.3 - 10.3i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.38iT - 79T^{2} \) |
| 83 | \( 1 + (-4.89 - 4.89i)T + 83iT^{2} \) |
| 89 | \( 1 + 2.98T + 89T^{2} \) |
| 97 | \( 1 + (-6.77 - 6.77i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89210909334777224559591722704, −10.81939035696904535976555541219, −10.51524322293657988887140240549, −8.764562853324643990759114958171, −8.211113603263646841903950894556, −7.28472061215707270802653403038, −5.47799609765450510644170349428, −4.04014592139567184890517382457, −3.61914162616713945022358670862, −2.39672467768159262718796888441,
1.53229202027818485640198097510, 3.67182250151275873677913109903, 4.39132128289729036347103072779, 5.91549047655113746748345490053, 6.95989845764248435813315317728, 7.67851484525433313462786798577, 8.744774634029551761821353633630, 9.604284008929589133325993431110, 11.08421722156080300112873219170, 11.94540938817583853945408368204