Properties

Label 2-285-1.1-c9-0-8
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.4·2-s − 81·3-s − 206.·4-s + 625·5-s + 1.41e3·6-s − 3.26e3·7-s + 1.25e4·8-s + 6.56e3·9-s − 1.09e4·10-s − 1.63e4·11-s + 1.67e4·12-s − 1.68e5·13-s + 5.71e4·14-s − 5.06e4·15-s − 1.13e5·16-s − 3.97e5·17-s − 1.14e5·18-s − 1.30e5·19-s − 1.28e5·20-s + 2.64e5·21-s + 2.85e5·22-s + 1.77e6·23-s − 1.01e6·24-s + 3.90e5·25-s + 2.95e6·26-s − 5.31e5·27-s + 6.74e5·28-s + ⋯
L(s)  = 1  − 0.772·2-s − 0.577·3-s − 0.403·4-s + 0.447·5-s + 0.446·6-s − 0.514·7-s + 1.08·8-s + 0.333·9-s − 0.345·10-s − 0.335·11-s + 0.232·12-s − 1.63·13-s + 0.397·14-s − 0.258·15-s − 0.434·16-s − 1.15·17-s − 0.257·18-s − 0.229·19-s − 0.180·20-s + 0.297·21-s + 0.259·22-s + 1.32·23-s − 0.625·24-s + 0.200·25-s + 1.26·26-s − 0.192·27-s + 0.207·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.2617874723\)
\(L(\frac12)\) \(\approx\) \(0.2617874723\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
19 \( 1 + 1.30e5T \)
good2 \( 1 + 17.4T + 512T^{2} \)
7 \( 1 + 3.26e3T + 4.03e7T^{2} \)
11 \( 1 + 1.63e4T + 2.35e9T^{2} \)
13 \( 1 + 1.68e5T + 1.06e10T^{2} \)
17 \( 1 + 3.97e5T + 1.18e11T^{2} \)
23 \( 1 - 1.77e6T + 1.80e12T^{2} \)
29 \( 1 - 4.10e6T + 1.45e13T^{2} \)
31 \( 1 - 7.49e5T + 2.64e13T^{2} \)
37 \( 1 + 1.40e7T + 1.29e14T^{2} \)
41 \( 1 - 7.51e6T + 3.27e14T^{2} \)
43 \( 1 + 3.50e7T + 5.02e14T^{2} \)
47 \( 1 + 1.98e7T + 1.11e15T^{2} \)
53 \( 1 - 6.86e7T + 3.29e15T^{2} \)
59 \( 1 + 1.18e8T + 8.66e15T^{2} \)
61 \( 1 + 1.76e8T + 1.16e16T^{2} \)
67 \( 1 + 7.82e7T + 2.72e16T^{2} \)
71 \( 1 - 1.99e8T + 4.58e16T^{2} \)
73 \( 1 + 2.70e8T + 5.88e16T^{2} \)
79 \( 1 + 5.51e8T + 1.19e17T^{2} \)
83 \( 1 + 2.14e7T + 1.86e17T^{2} \)
89 \( 1 - 1.76e8T + 3.50e17T^{2} \)
97 \( 1 + 1.58e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14470189346395547465108766987, −9.411199191645607592367966533217, −8.562996871454934725499972110786, −7.31916188568729187321102473693, −6.57788422435322637249609859724, −5.13972122795359851457945703855, −4.56112284399463518974203783124, −2.84268216709228098473908879856, −1.58677567998265041905642075103, −0.26770276494045140076290568463, 0.26770276494045140076290568463, 1.58677567998265041905642075103, 2.84268216709228098473908879856, 4.56112284399463518974203783124, 5.13972122795359851457945703855, 6.57788422435322637249609859724, 7.31916188568729187321102473693, 8.562996871454934725499972110786, 9.411199191645607592367966533217, 10.14470189346395547465108766987

Graph of the $Z$-function along the critical line