Properties

Label 2-285-1.1-c9-0-57
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 44.0·2-s − 81·3-s + 1.43e3·4-s + 625·5-s − 3.57e3·6-s − 6.48e3·7-s + 4.04e4·8-s + 6.56e3·9-s + 2.75e4·10-s − 1.68e4·11-s − 1.15e5·12-s − 1.13e5·13-s − 2.85e5·14-s − 5.06e4·15-s + 1.05e6·16-s + 2.89e5·17-s + 2.89e5·18-s − 1.30e5·19-s + 8.94e5·20-s + 5.24e5·21-s − 7.42e5·22-s + 8.04e5·23-s − 3.27e6·24-s + 3.90e5·25-s − 5.02e6·26-s − 5.31e5·27-s − 9.27e6·28-s + ⋯
L(s)  = 1  + 1.94·2-s − 0.577·3-s + 2.79·4-s + 0.447·5-s − 1.12·6-s − 1.02·7-s + 3.49·8-s + 0.333·9-s + 0.871·10-s − 0.346·11-s − 1.61·12-s − 1.10·13-s − 1.98·14-s − 0.258·15-s + 4.01·16-s + 0.839·17-s + 0.649·18-s − 0.229·19-s + 1.24·20-s + 0.589·21-s − 0.675·22-s + 0.599·23-s − 2.01·24-s + 0.200·25-s − 2.15·26-s − 0.192·27-s − 2.85·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(7.625560816\)
\(L(\frac12)\) \(\approx\) \(7.625560816\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
19 \( 1 + 1.30e5T \)
good2 \( 1 - 44.0T + 512T^{2} \)
7 \( 1 + 6.48e3T + 4.03e7T^{2} \)
11 \( 1 + 1.68e4T + 2.35e9T^{2} \)
13 \( 1 + 1.13e5T + 1.06e10T^{2} \)
17 \( 1 - 2.89e5T + 1.18e11T^{2} \)
23 \( 1 - 8.04e5T + 1.80e12T^{2} \)
29 \( 1 - 7.24e6T + 1.45e13T^{2} \)
31 \( 1 - 9.93e6T + 2.64e13T^{2} \)
37 \( 1 - 2.05e7T + 1.29e14T^{2} \)
41 \( 1 + 4.90e6T + 3.27e14T^{2} \)
43 \( 1 + 5.18e6T + 5.02e14T^{2} \)
47 \( 1 + 3.39e7T + 1.11e15T^{2} \)
53 \( 1 - 1.08e7T + 3.29e15T^{2} \)
59 \( 1 - 1.50e8T + 8.66e15T^{2} \)
61 \( 1 + 3.90e7T + 1.16e16T^{2} \)
67 \( 1 + 2.58e8T + 2.72e16T^{2} \)
71 \( 1 - 1.47e8T + 4.58e16T^{2} \)
73 \( 1 + 3.55e8T + 5.88e16T^{2} \)
79 \( 1 - 6.71e8T + 1.19e17T^{2} \)
83 \( 1 - 4.05e8T + 1.86e17T^{2} \)
89 \( 1 - 4.17e8T + 3.50e17T^{2} \)
97 \( 1 + 3.08e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38240708628960199129846735028, −9.904346948477219255315340643158, −7.81729528856077403652468450588, −6.66830908271779144563529367981, −6.23027069067250615606429053240, −5.15593298220652494176774920557, −4.49840956232769948958416810535, −3.11450333846829672458033844085, −2.49599145294361135575670803348, −0.956018642991039232385599864072, 0.956018642991039232385599864072, 2.49599145294361135575670803348, 3.11450333846829672458033844085, 4.49840956232769948958416810535, 5.15593298220652494176774920557, 6.23027069067250615606429053240, 6.66830908271779144563529367981, 7.81729528856077403652468450588, 9.904346948477219255315340643158, 10.38240708628960199129846735028

Graph of the $Z$-function along the critical line