Properties

Label 2-285-1.1-c9-0-43
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 29.5·2-s − 81·3-s + 363.·4-s + 625·5-s − 2.39e3·6-s + 5.26e3·7-s − 4.38e3·8-s + 6.56e3·9-s + 1.84e4·10-s − 1.66e4·11-s − 2.94e4·12-s + 8.79e4·13-s + 1.55e5·14-s − 5.06e4·15-s − 3.16e5·16-s − 3.89e4·17-s + 1.94e5·18-s − 1.30e5·19-s + 2.27e5·20-s − 4.26e5·21-s − 4.93e5·22-s + 1.43e6·23-s + 3.55e5·24-s + 3.90e5·25-s + 2.60e6·26-s − 5.31e5·27-s + 1.91e6·28-s + ⋯
L(s)  = 1  + 1.30·2-s − 0.577·3-s + 0.710·4-s + 0.447·5-s − 0.755·6-s + 0.828·7-s − 0.378·8-s + 0.333·9-s + 0.584·10-s − 0.343·11-s − 0.410·12-s + 0.854·13-s + 1.08·14-s − 0.258·15-s − 1.20·16-s − 0.113·17-s + 0.435·18-s − 0.229·19-s + 0.317·20-s − 0.478·21-s − 0.449·22-s + 1.07·23-s + 0.218·24-s + 0.200·25-s + 1.11·26-s − 0.192·27-s + 0.588·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(4.477683446\)
\(L(\frac12)\) \(\approx\) \(4.477683446\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
19 \( 1 + 1.30e5T \)
good2 \( 1 - 29.5T + 512T^{2} \)
7 \( 1 - 5.26e3T + 4.03e7T^{2} \)
11 \( 1 + 1.66e4T + 2.35e9T^{2} \)
13 \( 1 - 8.79e4T + 1.06e10T^{2} \)
17 \( 1 + 3.89e4T + 1.18e11T^{2} \)
23 \( 1 - 1.43e6T + 1.80e12T^{2} \)
29 \( 1 - 5.99e6T + 1.45e13T^{2} \)
31 \( 1 + 6.55e6T + 2.64e13T^{2} \)
37 \( 1 + 7.20e5T + 1.29e14T^{2} \)
41 \( 1 - 1.52e7T + 3.27e14T^{2} \)
43 \( 1 - 5.25e6T + 5.02e14T^{2} \)
47 \( 1 + 2.40e7T + 1.11e15T^{2} \)
53 \( 1 - 5.99e7T + 3.29e15T^{2} \)
59 \( 1 + 2.20e7T + 8.66e15T^{2} \)
61 \( 1 + 1.56e8T + 1.16e16T^{2} \)
67 \( 1 - 2.29e8T + 2.72e16T^{2} \)
71 \( 1 - 2.87e8T + 4.58e16T^{2} \)
73 \( 1 - 1.04e8T + 5.88e16T^{2} \)
79 \( 1 - 4.55e8T + 1.19e17T^{2} \)
83 \( 1 + 4.84e7T + 1.86e17T^{2} \)
89 \( 1 - 7.55e7T + 3.50e17T^{2} \)
97 \( 1 + 2.70e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73156811594032800367877841341, −9.329872998023637384822318542238, −8.295775243263798023233320502668, −6.90970752043932867864393460553, −6.01833488180238929283498272691, −5.17940715088528523847056222143, −4.50054029599407136084957370554, −3.32126558136360862884377832767, −2.07757087460644398341736806378, −0.811120102994213745025647786775, 0.811120102994213745025647786775, 2.07757087460644398341736806378, 3.32126558136360862884377832767, 4.50054029599407136084957370554, 5.17940715088528523847056222143, 6.01833488180238929283498272691, 6.90970752043932867864393460553, 8.295775243263798023233320502668, 9.329872998023637384822318542238, 10.73156811594032800367877841341

Graph of the $Z$-function along the critical line