Properties

Label 2-285-1.1-c1-0-6
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $2.27573$
Root an. cond. $1.50855$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s + 3-s + 0.999·4-s + 5-s + 1.73·6-s + 0.732·7-s − 1.73·8-s + 9-s + 1.73·10-s + 1.26·11-s + 0.999·12-s − 2.73·13-s + 1.26·14-s + 15-s − 5·16-s + 1.73·18-s + 19-s + 0.999·20-s + 0.732·21-s + 2.19·22-s − 3.46·23-s − 1.73·24-s + 25-s − 4.73·26-s + 27-s + 0.732·28-s − 2.19·29-s + ⋯
L(s)  = 1  + 1.22·2-s + 0.577·3-s + 0.499·4-s + 0.447·5-s + 0.707·6-s + 0.276·7-s − 0.612·8-s + 0.333·9-s + 0.547·10-s + 0.382·11-s + 0.288·12-s − 0.757·13-s + 0.338·14-s + 0.258·15-s − 1.25·16-s + 0.408·18-s + 0.229·19-s + 0.223·20-s + 0.159·21-s + 0.468·22-s − 0.722·23-s − 0.353·24-s + 0.200·25-s − 0.928·26-s + 0.192·27-s + 0.138·28-s − 0.407·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(2.27573\)
Root analytic conductor: \(1.50855\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.668697205\)
\(L(\frac12)\) \(\approx\) \(2.668697205\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 - 1.73T + 2T^{2} \)
7 \( 1 - 0.732T + 7T^{2} \)
11 \( 1 - 1.26T + 11T^{2} \)
13 \( 1 + 2.73T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
23 \( 1 + 3.46T + 23T^{2} \)
29 \( 1 + 2.19T + 29T^{2} \)
31 \( 1 + 4.92T + 31T^{2} \)
37 \( 1 - 4.19T + 37T^{2} \)
41 \( 1 - 4.73T + 41T^{2} \)
43 \( 1 + 6.19T + 43T^{2} \)
47 \( 1 - 3.46T + 47T^{2} \)
53 \( 1 + 2.53T + 53T^{2} \)
59 \( 1 - 9.46T + 59T^{2} \)
61 \( 1 + 13.4T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 - 16.3T + 71T^{2} \)
73 \( 1 + 3.07T + 73T^{2} \)
79 \( 1 - 2.92T + 79T^{2} \)
83 \( 1 - 0.928T + 83T^{2} \)
89 \( 1 - 7.26T + 89T^{2} \)
97 \( 1 - 4.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.15146469924703303495839368295, −11.16406106427020001019077922362, −9.812863144240357561180810209366, −9.102257630028187947415108993731, −7.87435648646176746695740198796, −6.67728330568751329913910617748, −5.58359033619848602859785877093, −4.58467533642185988339614222074, −3.49393018214745799274320542749, −2.19944547378500630649591783378, 2.19944547378500630649591783378, 3.49393018214745799274320542749, 4.58467533642185988339614222074, 5.58359033619848602859785877093, 6.67728330568751329913910617748, 7.87435648646176746695740198796, 9.102257630028187947415108993731, 9.812863144240357561180810209366, 11.16406106427020001019077922362, 12.15146469924703303495839368295

Graph of the $Z$-function along the critical line