Properties

Label 2-283140-1.1-c1-0-23
Degree $2$
Conductor $283140$
Sign $-1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 13-s − 3·17-s + 4·19-s + 3·23-s + 25-s − 3·29-s + 2·31-s − 2·35-s − 10·37-s + 43-s − 6·47-s − 3·49-s + 3·53-s − 6·59-s + 13·61-s − 65-s + 14·67-s − 14·73-s − 11·79-s + 12·83-s − 3·85-s − 12·89-s + 2·91-s + 4·95-s − 4·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 0.277·13-s − 0.727·17-s + 0.917·19-s + 0.625·23-s + 1/5·25-s − 0.557·29-s + 0.359·31-s − 0.338·35-s − 1.64·37-s + 0.152·43-s − 0.875·47-s − 3/7·49-s + 0.412·53-s − 0.781·59-s + 1.66·61-s − 0.124·65-s + 1.71·67-s − 1.63·73-s − 1.23·79-s + 1.31·83-s − 0.325·85-s − 1.27·89-s + 0.209·91-s + 0.410·95-s − 0.406·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92392398151429, −12.68281859749311, −11.99280276514276, −11.69514121590044, −10.97142829814416, −10.83275876618929, −9.935836182755638, −9.851773769889113, −9.412709659225365, −8.759324807707621, −8.503425014807708, −7.836026983080256, −7.166902031343954, −6.864565351724141, −6.532643121855558, −5.752353222617114, −5.459435148664099, −4.917171536422725, −4.349968637937016, −3.700126928980353, −3.161297982058180, −2.775508451387595, −2.036824131927846, −1.531427017304249, −0.7193653640543006, 0, 0.7193653640543006, 1.531427017304249, 2.036824131927846, 2.775508451387595, 3.161297982058180, 3.700126928980353, 4.349968637937016, 4.917171536422725, 5.459435148664099, 5.752353222617114, 6.532643121855558, 6.864565351724141, 7.166902031343954, 7.836026983080256, 8.503425014807708, 8.759324807707621, 9.412709659225365, 9.851773769889113, 9.935836182755638, 10.83275876618929, 10.97142829814416, 11.69514121590044, 11.99280276514276, 12.68281859749311, 12.92392398151429

Graph of the $Z$-function along the critical line