L(s) = 1 | − 3i·3-s + i·5-s − 6·9-s − i·11-s + 6i·13-s + 3·15-s − 4·17-s − 6i·19-s − 3·23-s + 4·25-s + 9i·27-s + 4i·29-s − 9·31-s − 3·33-s + 7i·37-s + ⋯ |
L(s) = 1 | − 1.73i·3-s + 0.447i·5-s − 2·9-s − 0.301i·11-s + 1.66i·13-s + 0.774·15-s − 0.970·17-s − 1.37i·19-s − 0.625·23-s + 0.800·25-s + 1.73i·27-s + 0.742i·29-s − 1.61·31-s − 0.522·33-s + 1.15i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8094066942\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8094066942\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + 3iT - 3T^{2} \) |
| 5 | \( 1 - iT - 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 13 | \( 1 - 6iT - 13T^{2} \) |
| 17 | \( 1 + 4T + 17T^{2} \) |
| 19 | \( 1 + 6iT - 19T^{2} \) |
| 23 | \( 1 + 3T + 23T^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 + 9T + 31T^{2} \) |
| 37 | \( 1 - 7iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 - 6iT - 43T^{2} \) |
| 47 | \( 1 - 12T + 47T^{2} \) |
| 53 | \( 1 - 2iT - 53T^{2} \) |
| 59 | \( 1 - 9iT - 59T^{2} \) |
| 61 | \( 1 + 8iT - 61T^{2} \) |
| 67 | \( 1 - 15iT - 67T^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 - 6T + 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 - 5T + 89T^{2} \) |
| 97 | \( 1 + 3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.965815256709578061755701176364, −7.970929161623730609973162627095, −7.11198342021762712135026152189, −6.77404503145119496374355093687, −6.25325784827471714775020220923, −5.16248964374009870609883321588, −4.11146394682894729592621045229, −2.82752987980947634028591631281, −2.16227545382332574653939063753, −1.20056245821313530318904163647,
0.26483538563779084555808931266, 2.15859539392913729547004501638, 3.35202094195077612571948163769, 3.94386681295991909761339123533, 4.73989642467808185576099402811, 5.51890285313055267382068267363, 5.95923148958372934368105614052, 7.37429782400931558499658528270, 8.203231858226989815633773288995, 8.828166532879313063266760358486