Properties

Label 2-280e2-1.1-c1-0-133
Degree $2$
Conductor $78400$
Sign $-1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·9-s − 5·11-s + 3·13-s − 5·17-s + 2·19-s − 2·23-s + 5·27-s − 3·29-s + 6·31-s + 5·33-s − 2·37-s − 3·39-s − 2·41-s − 6·43-s − 3·47-s + 5·51-s + 12·53-s − 2·57-s − 12·59-s − 6·61-s + 12·67-s + 2·69-s + 8·71-s − 6·73-s + 3·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 2/3·9-s − 1.50·11-s + 0.832·13-s − 1.21·17-s + 0.458·19-s − 0.417·23-s + 0.962·27-s − 0.557·29-s + 1.07·31-s + 0.870·33-s − 0.328·37-s − 0.480·39-s − 0.312·41-s − 0.914·43-s − 0.437·47-s + 0.700·51-s + 1.64·53-s − 0.264·57-s − 1.56·59-s − 0.768·61-s + 1.46·67-s + 0.240·69-s + 0.949·71-s − 0.702·73-s + 0.337·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 + T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 3 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08149297487694, −13.63834433180345, −13.39144853598936, −12.77493331619070, −12.28532653810146, −11.55831486046357, −11.38656421851227, −10.79249388626930, −10.34698878320469, −9.953313337942448, −9.095269503843171, −8.691490477429624, −8.162284212917518, −7.740726531465208, −7.013404878720659, −6.395170752064685, −6.045919444608809, −5.321781843284925, −5.044857356929490, −4.373629560309244, −3.610247822141523, −2.965251443422527, −2.416290845659329, −1.695368255078688, −0.6758963296560568, 0, 0.6758963296560568, 1.695368255078688, 2.416290845659329, 2.965251443422527, 3.610247822141523, 4.373629560309244, 5.044857356929490, 5.321781843284925, 6.045919444608809, 6.395170752064685, 7.013404878720659, 7.740726531465208, 8.162284212917518, 8.691490477429624, 9.095269503843171, 9.953313337942448, 10.34698878320469, 10.79249388626930, 11.38656421851227, 11.55831486046357, 12.28532653810146, 12.77493331619070, 13.39144853598936, 13.63834433180345, 14.08149297487694

Graph of the $Z$-function along the critical line