Properties

Label 2-2800-140.139-c1-0-46
Degree $2$
Conductor $2800$
Sign $0.270 + 0.962i$
Analytic cond. $22.3581$
Root an. cond. $4.72843$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·3-s + (1.73 − 2i)7-s − 9-s + 3.46i·11-s + 3.46·13-s + 2·19-s + (−4 − 3.46i)21-s + 3.46·23-s − 4i·27-s − 6·29-s + 8·31-s + 6.92·33-s + 2i·37-s − 6.92i·39-s + 6.92i·41-s + ⋯
L(s)  = 1  − 1.15i·3-s + (0.654 − 0.755i)7-s − 0.333·9-s + 1.04i·11-s + 0.960·13-s + 0.458·19-s + (−0.872 − 0.755i)21-s + 0.722·23-s − 0.769i·27-s − 1.11·29-s + 1.43·31-s + 1.20·33-s + 0.328i·37-s − 1.10i·39-s + 1.08i·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.270 + 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.270 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2800\)    =    \(2^{4} \cdot 5^{2} \cdot 7\)
Sign: $0.270 + 0.962i$
Analytic conductor: \(22.3581\)
Root analytic conductor: \(4.72843\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2800} (2799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2800,\ (\ :1/2),\ 0.270 + 0.962i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.269245614\)
\(L(\frac12)\) \(\approx\) \(2.269245614\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (-1.73 + 2i)T \)
good3 \( 1 + 2iT - 3T^{2} \)
11 \( 1 - 3.46iT - 11T^{2} \)
13 \( 1 - 3.46T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 - 3.46T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 6.92iT - 41T^{2} \)
43 \( 1 - 10.3T + 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 3.46iT - 61T^{2} \)
67 \( 1 - 3.46T + 67T^{2} \)
71 \( 1 - 3.46iT - 71T^{2} \)
73 \( 1 - 6.92T + 73T^{2} \)
79 \( 1 + 3.46iT - 79T^{2} \)
83 \( 1 - 6iT - 83T^{2} \)
89 \( 1 + 6.92iT - 89T^{2} \)
97 \( 1 + 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.330549399307722681231136335705, −7.80780374960843514020155622324, −7.13965245575270306833707538037, −6.63022586654358343287509420074, −5.69068363100424391488309447272, −4.66239485731007613560756713642, −3.96510677228507957839373706991, −2.68934046662317822319804883812, −1.60936286217737869562792740320, −0.961316787126073530870675360830, 1.09431156484567893088106457886, 2.50306913118602366773978519977, 3.51083230932756602117896284805, 4.13816354859367061272059039858, 5.19194910119785672526996008420, 5.59578275626963092247047398600, 6.50780912466813092928321764902, 7.63402244191088858756788768442, 8.446351582949086084635521503134, 8.994560466076612409316732591061

Graph of the $Z$-function along the critical line