L(s) = 1 | + 2i·3-s + (1.73 + 2i)7-s − 9-s − 3.46i·11-s + 3.46·13-s + 2·19-s + (−4 + 3.46i)21-s + 3.46·23-s + 4i·27-s − 6·29-s + 8·31-s + 6.92·33-s − 2i·37-s + 6.92i·39-s − 6.92i·41-s + ⋯ |
L(s) = 1 | + 1.15i·3-s + (0.654 + 0.755i)7-s − 0.333·9-s − 1.04i·11-s + 0.960·13-s + 0.458·19-s + (−0.872 + 0.755i)21-s + 0.722·23-s + 0.769i·27-s − 1.11·29-s + 1.43·31-s + 1.20·33-s − 0.328i·37-s + 1.10i·39-s − 1.08i·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.270 - 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.270 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.269245614\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.269245614\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-1.73 - 2i)T \) |
good | 3 | \( 1 - 2iT - 3T^{2} \) |
| 11 | \( 1 + 3.46iT - 11T^{2} \) |
| 13 | \( 1 - 3.46T + 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 - 3.46T + 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + 6.92iT - 41T^{2} \) |
| 43 | \( 1 - 10.3T + 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 - 6T + 59T^{2} \) |
| 61 | \( 1 - 3.46iT - 61T^{2} \) |
| 67 | \( 1 - 3.46T + 67T^{2} \) |
| 71 | \( 1 + 3.46iT - 71T^{2} \) |
| 73 | \( 1 - 6.92T + 73T^{2} \) |
| 79 | \( 1 - 3.46iT - 79T^{2} \) |
| 83 | \( 1 + 6iT - 83T^{2} \) |
| 89 | \( 1 - 6.92iT - 89T^{2} \) |
| 97 | \( 1 + 13.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.994560466076612409316732591061, −8.446351582949086084635521503134, −7.63402244191088858756788768442, −6.50780912466813092928321764902, −5.59578275626963092247047398600, −5.19194910119785672526996008420, −4.13816354859367061272059039858, −3.51083230932756602117896284805, −2.50306913118602366773978519977, −1.09431156484567893088106457886,
0.961316787126073530870675360830, 1.60936286217737869562792740320, 2.68934046662317822319804883812, 3.96510677228507957839373706991, 4.66239485731007613560756713642, 5.69068363100424391488309447272, 6.63022586654358343287509420074, 7.13965245575270306833707538037, 7.80780374960843514020155622324, 8.330549399307722681231136335705