Properties

Label 2-2800-112.51-c0-0-2
Degree $2$
Conductor $2800$
Sign $0.557 - 0.830i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)7-s + 0.999·8-s + (−0.866 − 0.5i)9-s + (−0.366 + 1.36i)11-s + (1 + i)13-s + (0.499 + 0.866i)14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.866 − 0.499i)18-s + (0.366 + 1.36i)19-s + (−0.999 − i)22-s + (0.5 − 0.866i)23-s + (−1.36 + 0.366i)26-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)7-s + 0.999·8-s + (−0.866 − 0.5i)9-s + (−0.366 + 1.36i)11-s + (1 + i)13-s + (0.499 + 0.866i)14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.866 − 0.499i)18-s + (0.366 + 1.36i)19-s + (−0.999 − i)22-s + (0.5 − 0.866i)23-s + (−1.36 + 0.366i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2800\)    =    \(2^{4} \cdot 5^{2} \cdot 7\)
Sign: $0.557 - 0.830i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2800} (51, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2800,\ (\ :0),\ 0.557 - 0.830i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9117866991\)
\(L(\frac12)\) \(\approx\) \(0.9117866991\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
5 \( 1 \)
7 \( 1 + (-0.5 + 0.866i)T \)
good3 \( 1 + (0.866 + 0.5i)T^{2} \)
11 \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \)
13 \( 1 + (-1 - i)T + iT^{2} \)
17 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \)
23 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + iT^{2} \)
31 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
37 \( 1 + (-0.866 + 0.5i)T^{2} \)
41 \( 1 - iT - T^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
53 \( 1 + (0.866 + 0.5i)T^{2} \)
59 \( 1 + (-0.866 - 0.5i)T^{2} \)
61 \( 1 + (0.866 - 0.5i)T^{2} \)
67 \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \)
71 \( 1 - T + T^{2} \)
73 \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
83 \( 1 + (-1 + i)T - iT^{2} \)
89 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
97 \( 1 - T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.079781307779616403075066403958, −8.163547567844203383280077390085, −7.71653593580111225470255863986, −6.72285436386458576052302664041, −6.40642917189336291928164042297, −5.26206802988408828164521701473, −4.54924697690797611476917527625, −3.81255980843452818882239453918, −2.24129954787090119875489166080, −1.05999592554804088225789017277, 0.901237921274665291271228206432, 2.30223672879266461890622861597, 2.98791582938490826594922992975, 3.75196618953381607216766027045, 5.17559268188793591097824518282, 5.48726647013841131235449798065, 6.57123379641762867296971696037, 7.85985442790228357043241383399, 8.385184604166063445488922893632, 8.711081618000335813638954370291

Graph of the $Z$-function along the critical line