L(s) = 1 | − 7-s − 3·9-s + 4·13-s + 4·17-s − 4·19-s − 8·23-s + 2·29-s + 8·31-s − 8·37-s + 6·41-s − 8·43-s − 8·47-s + 49-s + 4·59-s − 6·61-s + 3·63-s − 8·67-s − 12·71-s − 4·73-s + 4·79-s + 9·81-s − 10·89-s − 4·91-s − 12·97-s − 18·101-s + 8·103-s − 8·107-s + ⋯ |
L(s) = 1 | − 0.377·7-s − 9-s + 1.10·13-s + 0.970·17-s − 0.917·19-s − 1.66·23-s + 0.371·29-s + 1.43·31-s − 1.31·37-s + 0.937·41-s − 1.21·43-s − 1.16·47-s + 1/7·49-s + 0.520·59-s − 0.768·61-s + 0.377·63-s − 0.977·67-s − 1.42·71-s − 0.468·73-s + 0.450·79-s + 81-s − 1.05·89-s − 0.419·91-s − 1.21·97-s − 1.79·101-s + 0.788·103-s − 0.773·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 3 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 17 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + 6 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 + 12 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.331969944239851172171411374644, −7.962421146746329353445561831571, −6.69483293567113263839040312229, −6.12374966442712172312239811518, −5.52130628465636309328639322486, −4.39028745411060443743752815850, −3.52384555028093626901654335767, −2.74522802306559548300227796125, −1.50665529316987885575804219641, 0,
1.50665529316987885575804219641, 2.74522802306559548300227796125, 3.52384555028093626901654335767, 4.39028745411060443743752815850, 5.52130628465636309328639322486, 6.12374966442712172312239811518, 6.69483293567113263839040312229, 7.962421146746329353445561831571, 8.331969944239851172171411374644