Properties

Label 2-280-35.33-c1-0-8
Degree $2$
Conductor $280$
Sign $0.994 - 0.107i$
Analytic cond. $2.23581$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.19 + 0.856i)3-s + (0.672 − 2.13i)5-s + (−2.52 + 0.802i)7-s + (6.87 + 3.97i)9-s + (−1.05 − 1.82i)11-s + (−1.20 + 1.20i)13-s + (3.97 − 6.23i)15-s + (0.850 − 3.17i)17-s + (−2.36 + 4.09i)19-s + (−8.74 + 0.406i)21-s + (−4.00 + 1.07i)23-s + (−4.09 − 2.86i)25-s + (11.5 + 11.5i)27-s + 3.65i·29-s + (−1.63 + 0.946i)31-s + ⋯
L(s)  = 1  + (1.84 + 0.494i)3-s + (0.300 − 0.953i)5-s + (−0.952 + 0.303i)7-s + (2.29 + 1.32i)9-s + (−0.317 − 0.550i)11-s + (−0.334 + 0.334i)13-s + (1.02 − 1.61i)15-s + (0.206 − 0.770i)17-s + (−0.542 + 0.939i)19-s + (−1.90 + 0.0886i)21-s + (−0.835 + 0.223i)23-s + (−0.819 − 0.573i)25-s + (2.22 + 2.22i)27-s + 0.679i·29-s + (−0.294 + 0.169i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(280\)    =    \(2^{3} \cdot 5 \cdot 7\)
Sign: $0.994 - 0.107i$
Analytic conductor: \(2.23581\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{280} (33, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 280,\ (\ :1/2),\ 0.994 - 0.107i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.10159 + 0.113461i\)
\(L(\frac12)\) \(\approx\) \(2.10159 + 0.113461i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.672 + 2.13i)T \)
7 \( 1 + (2.52 - 0.802i)T \)
good3 \( 1 + (-3.19 - 0.856i)T + (2.59 + 1.5i)T^{2} \)
11 \( 1 + (1.05 + 1.82i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (1.20 - 1.20i)T - 13iT^{2} \)
17 \( 1 + (-0.850 + 3.17i)T + (-14.7 - 8.5i)T^{2} \)
19 \( 1 + (2.36 - 4.09i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (4.00 - 1.07i)T + (19.9 - 11.5i)T^{2} \)
29 \( 1 - 3.65iT - 29T^{2} \)
31 \( 1 + (1.63 - 0.946i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.65 + 9.91i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 - 0.826iT - 41T^{2} \)
43 \( 1 + (-4.70 - 4.70i)T + 43iT^{2} \)
47 \( 1 + (-3.90 + 1.04i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (0.645 - 2.40i)T + (-45.8 - 26.5i)T^{2} \)
59 \( 1 + (1.15 + 2.00i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-1.44 - 0.837i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (12.2 + 3.28i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 - 10.7T + 71T^{2} \)
73 \( 1 + (12.6 + 3.37i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (-8.29 - 4.78i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (3.47 - 3.47i)T - 83iT^{2} \)
89 \( 1 + (-2.86 + 4.96i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (1.02 + 1.02i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.30100085423007211226819591144, −10.49366372898800945671152682183, −9.604155918603207890424430811496, −9.101562808931187177769646223550, −8.309325808198395658343879622400, −7.34301914289298877771199249782, −5.71914317396105203535537090148, −4.34138868481999455482394011280, −3.29988769797313915342866553707, −2.08636153263751173857519947126, 2.17244108221938078542573524652, 3.03629247312622534167592108589, 4.07849723111300497225533374625, 6.30141365127582634878381240552, 7.13200961196635989229467311034, 7.88381356046880274943153937556, 8.988448486137131029246025442680, 9.925040204062516101961456689553, 10.41817850989842148806611408022, 12.19742622294142462204587430786

Graph of the $Z$-function along the critical line