Properties

Label 2-280-35.17-c1-0-4
Degree $2$
Conductor $280$
Sign $0.214 + 0.976i$
Analytic cond. $2.23581$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.75 + 0.739i)3-s + (−1.04 + 1.97i)5-s + (−1.91 − 1.82i)7-s + (4.46 − 2.57i)9-s + (2.37 − 4.11i)11-s + (1.92 + 1.92i)13-s + (1.42 − 6.22i)15-s + (−1.76 − 6.59i)17-s + (0.0439 + 0.0761i)19-s + (6.62 + 3.63i)21-s + (−0.242 − 0.0650i)23-s + (−2.81 − 4.13i)25-s + (−4.35 + 4.35i)27-s + 0.284i·29-s + (−3.69 − 2.13i)31-s + ⋯
L(s)  = 1  + (−1.59 + 0.426i)3-s + (−0.467 + 0.883i)5-s + (−0.722 − 0.691i)7-s + (1.48 − 0.859i)9-s + (0.715 − 1.23i)11-s + (0.534 + 0.534i)13-s + (0.368 − 1.60i)15-s + (−0.428 − 1.59i)17-s + (0.0100 + 0.0174i)19-s + (1.44 + 0.792i)21-s + (−0.0505 − 0.0135i)23-s + (−0.562 − 0.827i)25-s + (−0.838 + 0.838i)27-s + 0.0529i·29-s + (−0.662 − 0.382i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.214 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.214 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(280\)    =    \(2^{3} \cdot 5 \cdot 7\)
Sign: $0.214 + 0.976i$
Analytic conductor: \(2.23581\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{280} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 280,\ (\ :1/2),\ 0.214 + 0.976i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.333379 - 0.268215i\)
\(L(\frac12)\) \(\approx\) \(0.333379 - 0.268215i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (1.04 - 1.97i)T \)
7 \( 1 + (1.91 + 1.82i)T \)
good3 \( 1 + (2.75 - 0.739i)T + (2.59 - 1.5i)T^{2} \)
11 \( 1 + (-2.37 + 4.11i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-1.92 - 1.92i)T + 13iT^{2} \)
17 \( 1 + (1.76 + 6.59i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (-0.0439 - 0.0761i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.242 + 0.0650i)T + (19.9 + 11.5i)T^{2} \)
29 \( 1 - 0.284iT - 29T^{2} \)
31 \( 1 + (3.69 + 2.13i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-1.05 + 3.93i)T + (-32.0 - 18.5i)T^{2} \)
41 \( 1 + 9.16iT - 41T^{2} \)
43 \( 1 + (6.72 - 6.72i)T - 43iT^{2} \)
47 \( 1 + (-6.75 - 1.80i)T + (40.7 + 23.5i)T^{2} \)
53 \( 1 + (2.27 + 8.50i)T + (-45.8 + 26.5i)T^{2} \)
59 \( 1 + (1.56 - 2.71i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4.84 - 2.79i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (2.19 - 0.588i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 + 3.53T + 71T^{2} \)
73 \( 1 + (-8.72 + 2.33i)T + (63.2 - 36.5i)T^{2} \)
79 \( 1 + (-10.7 + 6.18i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (10.1 + 10.1i)T + 83iT^{2} \)
89 \( 1 + (7.02 + 12.1i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (5.72 - 5.72i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.28226234843826576654818210655, −11.09254000192476806559970531934, −10.07117049739563344447469480106, −9.057941564791773326461020152363, −7.29811752402822374563855182502, −6.57253191133052149801014193240, −5.82095850087539355420435198582, −4.36514556219920557499482087894, −3.38495259605835855033251343408, −0.41897355543565401622353932707, 1.50121550094114329303911303560, 3.99675244932659134144574171803, 5.13070708902038722366333963995, 6.07738224248939864926479828275, 6.84628974124352108638162435330, 8.162639249255549720209348686030, 9.284946902387711618643413291324, 10.35899910047232676218546607568, 11.34329710251284263725582309365, 12.33507624068807015972424999616

Graph of the $Z$-function along the critical line