Properties

Label 2-280-1.1-c3-0-14
Degree $2$
Conductor $280$
Sign $-1$
Analytic cond. $16.5205$
Root an. cond. $4.06454$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5·5-s + 7·7-s − 26·9-s − 39·11-s − 17·13-s − 5·15-s − 15·17-s + 74·19-s − 7·21-s − 14·23-s + 25·25-s + 53·27-s − 237·29-s − 180·31-s + 39·33-s + 35·35-s − 318·37-s + 17·39-s − 348·41-s − 22·43-s − 130·45-s − 193·47-s + 49·49-s + 15·51-s − 208·53-s − 195·55-s + ⋯
L(s)  = 1  − 0.192·3-s + 0.447·5-s + 0.377·7-s − 0.962·9-s − 1.06·11-s − 0.362·13-s − 0.0860·15-s − 0.214·17-s + 0.893·19-s − 0.0727·21-s − 0.126·23-s + 1/5·25-s + 0.377·27-s − 1.51·29-s − 1.04·31-s + 0.205·33-s + 0.169·35-s − 1.41·37-s + 0.0697·39-s − 1.32·41-s − 0.0780·43-s − 0.430·45-s − 0.598·47-s + 1/7·49-s + 0.0411·51-s − 0.539·53-s − 0.478·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(280\)    =    \(2^{3} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(16.5205\)
Root analytic conductor: \(4.06454\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: $\chi_{280} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 280,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
7 \( 1 - p T \)
good3 \( 1 + T + p^{3} T^{2} \)
11 \( 1 + 39 T + p^{3} T^{2} \)
13 \( 1 + 17 T + p^{3} T^{2} \)
17 \( 1 + 15 T + p^{3} T^{2} \)
19 \( 1 - 74 T + p^{3} T^{2} \)
23 \( 1 + 14 T + p^{3} T^{2} \)
29 \( 1 + 237 T + p^{3} T^{2} \)
31 \( 1 + 180 T + p^{3} T^{2} \)
37 \( 1 + 318 T + p^{3} T^{2} \)
41 \( 1 + 348 T + p^{3} T^{2} \)
43 \( 1 + 22 T + p^{3} T^{2} \)
47 \( 1 + 193 T + p^{3} T^{2} \)
53 \( 1 + 208 T + p^{3} T^{2} \)
59 \( 1 - 452 T + p^{3} T^{2} \)
61 \( 1 - 340 T + p^{3} T^{2} \)
67 \( 1 + 408 T + p^{3} T^{2} \)
71 \( 1 - 528 T + p^{3} T^{2} \)
73 \( 1 + 554 T + p^{3} T^{2} \)
79 \( 1 - 539 T + p^{3} T^{2} \)
83 \( 1 - 164 T + p^{3} T^{2} \)
89 \( 1 + 576 T + p^{3} T^{2} \)
97 \( 1 + 827 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99733655032503238950331652097, −10.07836868033850112906066832593, −9.035044591075715380255396324543, −8.055701224541250542231443555946, −7.03778387840515664565140055806, −5.62126631695288955813181923240, −5.10728971523837573944579025726, −3.32087211172066782001659805168, −2.00122517121427611305092174829, 0, 2.00122517121427611305092174829, 3.32087211172066782001659805168, 5.10728971523837573944579025726, 5.62126631695288955813181923240, 7.03778387840515664565140055806, 8.055701224541250542231443555946, 9.035044591075715380255396324543, 10.07836868033850112906066832593, 10.99733655032503238950331652097

Graph of the $Z$-function along the critical line