L(s) = 1 | + (−1.36 + 0.366i)2-s + (0.866 + 1.5i)3-s + (1.73 − i)4-s + (−1.5 − 0.866i)5-s + (−1.73 − 1.73i)6-s + (−1.73 − 2i)7-s + (−1.99 + 2i)8-s + (2.36 + 0.633i)10-s + (0.866 − 0.5i)11-s + (3 + 1.73i)12-s + 3.46i·13-s + (3.09 + 2.09i)14-s − 3i·15-s + (1.99 − 3.46i)16-s + (−1.5 + 0.866i)17-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.499 + 0.866i)3-s + (0.866 − 0.5i)4-s + (−0.670 − 0.387i)5-s + (−0.707 − 0.707i)6-s + (−0.654 − 0.755i)7-s + (−0.707 + 0.707i)8-s + (0.748 + 0.200i)10-s + (0.261 − 0.150i)11-s + (0.866 + 0.499i)12-s + 0.960i·13-s + (0.827 + 0.560i)14-s − 0.774i·15-s + (0.499 − 0.866i)16-s + (−0.363 + 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.478059 + 0.144476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.478059 + 0.144476i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.366i)T \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 3 | \( 1 + (-0.866 - 1.5i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.5 + 0.866i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (1.5 - 0.866i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.59 - 4.5i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (0.866 + 1.5i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.46iT - 41T^{2} \) |
| 43 | \( 1 + 2iT - 43T^{2} \) |
| 47 | \( 1 + (-4.33 + 7.5i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.59 + 4.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.5 + 2.59i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.59 + 1.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 14iT - 71T^{2} \) |
| 73 | \( 1 + (-7.5 + 4.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.79 - 4.5i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 13.8T + 83T^{2} \) |
| 89 | \( 1 + (-13.5 - 7.79i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 17.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.06857603559668187940785591779, −16.25244023919090663483888074103, −15.41511323957353834842249934522, −14.16209946289559761358393547268, −12.13207478256375503000632186598, −10.58044058794066070153863344420, −9.500752157084911352039298183007, −8.366268142254710935803300809034, −6.70339154631673365237492672570, −3.97935651422220664617584685071,
2.79175426214166254513393836923, 6.68917178271240966326952511997, 7.85822589789037405549931951894, 9.085135028380696945126021414053, 10.75381845164304346558910523698, 12.15519613932422405978079593033, 13.13342652700473590833995356274, 15.09420966833529296501254558014, 15.97201328306283097025206163750, 17.60497493703880247588484279251