Properties

Label 2-28-1.1-c7-0-3
Degree $2$
Conductor $28$
Sign $-1$
Analytic cond. $8.74678$
Root an. cond. $2.95749$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 38.7·3-s − 496.·5-s − 343·7-s − 684.·9-s + 4.03e3·11-s − 1.44e4·13-s − 1.92e4·15-s − 2.67e4·17-s + 3.66e4·19-s − 1.32e4·21-s − 3.49e4·23-s + 1.68e5·25-s − 1.11e5·27-s + 3.58e4·29-s + 1.98e5·31-s + 1.56e5·33-s + 1.70e5·35-s − 1.14e5·37-s − 5.60e5·39-s + 2.45e5·41-s + 3.02e4·43-s + 3.39e5·45-s − 3.05e5·47-s + 1.17e5·49-s − 1.03e6·51-s − 1.21e6·53-s − 2.00e6·55-s + ⋯
L(s)  = 1  + 0.828·3-s − 1.77·5-s − 0.377·7-s − 0.312·9-s + 0.914·11-s − 1.82·13-s − 1.47·15-s − 1.32·17-s + 1.22·19-s − 0.313·21-s − 0.598·23-s + 2.15·25-s − 1.08·27-s + 0.273·29-s + 1.19·31-s + 0.757·33-s + 0.671·35-s − 0.371·37-s − 1.51·39-s + 0.557·41-s + 0.0579·43-s + 0.555·45-s − 0.428·47-s + 0.142·49-s − 1.09·51-s − 1.11·53-s − 1.62·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28\)    =    \(2^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(8.74678\)
Root analytic conductor: \(2.95749\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 28,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 343T \)
good3 \( 1 - 38.7T + 2.18e3T^{2} \)
5 \( 1 + 496.T + 7.81e4T^{2} \)
11 \( 1 - 4.03e3T + 1.94e7T^{2} \)
13 \( 1 + 1.44e4T + 6.27e7T^{2} \)
17 \( 1 + 2.67e4T + 4.10e8T^{2} \)
19 \( 1 - 3.66e4T + 8.93e8T^{2} \)
23 \( 1 + 3.49e4T + 3.40e9T^{2} \)
29 \( 1 - 3.58e4T + 1.72e10T^{2} \)
31 \( 1 - 1.98e5T + 2.75e10T^{2} \)
37 \( 1 + 1.14e5T + 9.49e10T^{2} \)
41 \( 1 - 2.45e5T + 1.94e11T^{2} \)
43 \( 1 - 3.02e4T + 2.71e11T^{2} \)
47 \( 1 + 3.05e5T + 5.06e11T^{2} \)
53 \( 1 + 1.21e6T + 1.17e12T^{2} \)
59 \( 1 + 1.53e6T + 2.48e12T^{2} \)
61 \( 1 + 4.50e4T + 3.14e12T^{2} \)
67 \( 1 - 3.08e6T + 6.06e12T^{2} \)
71 \( 1 + 1.69e6T + 9.09e12T^{2} \)
73 \( 1 + 3.86e6T + 1.10e13T^{2} \)
79 \( 1 - 2.00e6T + 1.92e13T^{2} \)
83 \( 1 + 8.28e6T + 2.71e13T^{2} \)
89 \( 1 + 6.50e6T + 4.42e13T^{2} \)
97 \( 1 + 1.14e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.05569900760741093739859203013, −14.06701542246417433814737309472, −12.29229899146141975387039684831, −11.47065165084101464662263004385, −9.478803074990492011641460549072, −8.193348197772232574703031973277, −7.08165516485800333005193773450, −4.38166338862504466256642613888, −2.95722235374892833709467497848, 0, 2.95722235374892833709467497848, 4.38166338862504466256642613888, 7.08165516485800333005193773450, 8.193348197772232574703031973277, 9.478803074990492011641460549072, 11.47065165084101464662263004385, 12.29229899146141975387039684831, 14.06701542246417433814737309472, 15.05569900760741093739859203013

Graph of the $Z$-function along the critical line