Properties

Label 2-28-1.1-c7-0-0
Degree $2$
Conductor $28$
Sign $1$
Analytic cond. $8.74678$
Root an. cond. $2.95749$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 66.4·3-s − 157.·5-s + 343·7-s + 2.22e3·9-s + 6.20e3·11-s + 5.38e3·13-s + 1.04e4·15-s − 1.09e4·17-s + 1.17e4·19-s − 2.27e4·21-s + 1.06e5·23-s − 5.34e4·25-s − 2.36e3·27-s − 5.15e4·29-s − 2.47e5·31-s − 4.12e5·33-s − 5.39e4·35-s + 4.33e5·37-s − 3.57e5·39-s + 3.22e5·41-s + 8.78e5·43-s − 3.49e5·45-s + 6.55e5·47-s + 1.17e5·49-s + 7.30e5·51-s − 4.44e5·53-s − 9.76e5·55-s + ⋯
L(s)  = 1  − 1.41·3-s − 0.562·5-s + 0.377·7-s + 1.01·9-s + 1.40·11-s + 0.679·13-s + 0.798·15-s − 0.542·17-s + 0.391·19-s − 0.536·21-s + 1.81·23-s − 0.683·25-s − 0.0231·27-s − 0.392·29-s − 1.49·31-s − 1.99·33-s − 0.212·35-s + 1.40·37-s − 0.964·39-s + 0.731·41-s + 1.68·43-s − 0.571·45-s + 0.920·47-s + 0.142·49-s + 0.770·51-s − 0.410·53-s − 0.791·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28\)    =    \(2^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(8.74678\)
Root analytic conductor: \(2.95749\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 28,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.012637088\)
\(L(\frac12)\) \(\approx\) \(1.012637088\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 343T \)
good3 \( 1 + 66.4T + 2.18e3T^{2} \)
5 \( 1 + 157.T + 7.81e4T^{2} \)
11 \( 1 - 6.20e3T + 1.94e7T^{2} \)
13 \( 1 - 5.38e3T + 6.27e7T^{2} \)
17 \( 1 + 1.09e4T + 4.10e8T^{2} \)
19 \( 1 - 1.17e4T + 8.93e8T^{2} \)
23 \( 1 - 1.06e5T + 3.40e9T^{2} \)
29 \( 1 + 5.15e4T + 1.72e10T^{2} \)
31 \( 1 + 2.47e5T + 2.75e10T^{2} \)
37 \( 1 - 4.33e5T + 9.49e10T^{2} \)
41 \( 1 - 3.22e5T + 1.94e11T^{2} \)
43 \( 1 - 8.78e5T + 2.71e11T^{2} \)
47 \( 1 - 6.55e5T + 5.06e11T^{2} \)
53 \( 1 + 4.44e5T + 1.17e12T^{2} \)
59 \( 1 - 2.14e6T + 2.48e12T^{2} \)
61 \( 1 - 5.92e5T + 3.14e12T^{2} \)
67 \( 1 - 1.72e6T + 6.06e12T^{2} \)
71 \( 1 - 1.58e6T + 9.09e12T^{2} \)
73 \( 1 + 4.33e6T + 1.10e13T^{2} \)
79 \( 1 + 6.08e6T + 1.92e13T^{2} \)
83 \( 1 + 8.10e6T + 2.71e13T^{2} \)
89 \( 1 - 9.86e6T + 4.42e13T^{2} \)
97 \( 1 + 1.71e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.92452442851786385857106676770, −14.56400510428925775983768184847, −12.82254298316349620197232123431, −11.49644384530215454587305652872, −11.07652909017344734539039550225, −9.096038049657601570719226328952, −7.14169875331353586097768383755, −5.77783527037691559786222184223, −4.16526462610390347184493289631, −0.945840617285120593439029079535, 0.945840617285120593439029079535, 4.16526462610390347184493289631, 5.77783527037691559786222184223, 7.14169875331353586097768383755, 9.096038049657601570719226328952, 11.07652909017344734539039550225, 11.49644384530215454587305652872, 12.82254298316349620197232123431, 14.56400510428925775983768184847, 15.92452442851786385857106676770

Graph of the $Z$-function along the critical line