Properties

Label 2-28-1.1-c3-0-0
Degree $2$
Conductor $28$
Sign $1$
Analytic cond. $1.65205$
Root an. cond. $1.28532$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 6·5-s + 7·7-s − 11·9-s − 12·11-s − 82·13-s + 24·15-s − 30·17-s + 68·19-s + 28·21-s + 216·23-s − 89·25-s − 152·27-s + 246·29-s − 112·31-s − 48·33-s + 42·35-s + 110·37-s − 328·39-s − 246·41-s − 172·43-s − 66·45-s + 192·47-s + 49·49-s − 120·51-s + 558·53-s − 72·55-s + ⋯
L(s)  = 1  + 0.769·3-s + 0.536·5-s + 0.377·7-s − 0.407·9-s − 0.328·11-s − 1.74·13-s + 0.413·15-s − 0.428·17-s + 0.821·19-s + 0.290·21-s + 1.95·23-s − 0.711·25-s − 1.08·27-s + 1.57·29-s − 0.648·31-s − 0.253·33-s + 0.202·35-s + 0.488·37-s − 1.34·39-s − 0.937·41-s − 0.609·43-s − 0.218·45-s + 0.595·47-s + 1/7·49-s − 0.329·51-s + 1.44·53-s − 0.176·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28\)    =    \(2^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(1.65205\)
Root analytic conductor: \(1.28532\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 28,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.458797723\)
\(L(\frac12)\) \(\approx\) \(1.458797723\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p T \)
good3 \( 1 - 4 T + p^{3} T^{2} \)
5 \( 1 - 6 T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 + 82 T + p^{3} T^{2} \)
17 \( 1 + 30 T + p^{3} T^{2} \)
19 \( 1 - 68 T + p^{3} T^{2} \)
23 \( 1 - 216 T + p^{3} T^{2} \)
29 \( 1 - 246 T + p^{3} T^{2} \)
31 \( 1 + 112 T + p^{3} T^{2} \)
37 \( 1 - 110 T + p^{3} T^{2} \)
41 \( 1 + 6 p T + p^{3} T^{2} \)
43 \( 1 + 4 p T + p^{3} T^{2} \)
47 \( 1 - 192 T + p^{3} T^{2} \)
53 \( 1 - 558 T + p^{3} T^{2} \)
59 \( 1 - 540 T + p^{3} T^{2} \)
61 \( 1 - 110 T + p^{3} T^{2} \)
67 \( 1 - 140 T + p^{3} T^{2} \)
71 \( 1 + 840 T + p^{3} T^{2} \)
73 \( 1 + 550 T + p^{3} T^{2} \)
79 \( 1 + 208 T + p^{3} T^{2} \)
83 \( 1 - 516 T + p^{3} T^{2} \)
89 \( 1 + 1398 T + p^{3} T^{2} \)
97 \( 1 - 1586 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.91464440552115059611398230166, −15.20398885950737626094535820850, −14.32945295367607849958636091763, −13.25316910488295587286964041636, −11.70635812900203603357626649826, −10.02923638757392404020866152734, −8.799583145182551892031258097314, −7.31312267248270248202945892893, −5.15882247099216722895824219301, −2.64008443943042920582771265063, 2.64008443943042920582771265063, 5.15882247099216722895824219301, 7.31312267248270248202945892893, 8.799583145182551892031258097314, 10.02923638757392404020866152734, 11.70635812900203603357626649826, 13.25316910488295587286964041636, 14.32945295367607849958636091763, 15.20398885950737626094535820850, 16.91464440552115059611398230166

Graph of the $Z$-function along the critical line