L(s) = 1 | + 3-s + (−0.707 − 0.707i)5-s + (0.707 + 0.707i)7-s + 9-s + (1 + i)13-s + (−0.707 − 0.707i)15-s + (−0.707 + 0.707i)17-s + (0.707 + 0.707i)21-s + (0.707 + 0.707i)23-s + 1.00i·25-s + 27-s − 29-s − 31-s − 1.00i·35-s + (−0.707 − 0.707i)37-s + ⋯ |
L(s) = 1 | + 3-s + (−0.707 − 0.707i)5-s + (0.707 + 0.707i)7-s + 9-s + (1 + i)13-s + (−0.707 − 0.707i)15-s + (−0.707 + 0.707i)17-s + (0.707 + 0.707i)21-s + (0.707 + 0.707i)23-s + 1.00i·25-s + 27-s − 29-s − 31-s − 1.00i·35-s + (−0.707 − 0.707i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.739954664\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.739954664\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 23 | \( 1 + (-0.707 - 0.707i)T \) |
good | 7 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1 - i)T + iT^{2} \) |
| 17 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 41 | \( 1 + iT - T^{2} \) |
| 43 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 71 | \( 1 + iT - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + 1.41T + T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.919596899802337700530580672079, −8.574338659273628140066968565483, −7.56345600610953558890487736537, −7.10587194689797668813253320072, −5.84488189149506771085838082633, −5.03968045548116239167462363518, −3.98164640975534348231637770703, −3.71060429016024908511989568801, −2.19492203667401294203760853353, −1.52041477015295031960808740563,
1.17821129963383442425022917312, 2.53658278465525417255501957901, 3.30711193704422804543908101268, 4.07673682085867526693422109651, 4.78083806288620263499399615810, 6.02971156557631318241108877641, 7.17843657656515561362973620472, 7.33354416103580858758868393966, 8.312969584211696303891483794637, 8.653048285332848437428635150986