Properties

Label 2-2760-345.68-c0-0-0
Degree $2$
Conductor $2760$
Sign $-0.229 - 0.973i$
Analytic cond. $1.37741$
Root an. cond. $1.17363$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)7-s − 9-s + (1 + i)13-s + (0.707 − 0.707i)15-s + (−0.707 + 0.707i)17-s + (0.707 − 0.707i)21-s + (0.707 + 0.707i)23-s + 1.00i·25-s i·27-s + 29-s − 31-s + 1.00i·35-s + (0.707 + 0.707i)37-s + ⋯
L(s)  = 1  + i·3-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)7-s − 9-s + (1 + i)13-s + (0.707 − 0.707i)15-s + (−0.707 + 0.707i)17-s + (0.707 − 0.707i)21-s + (0.707 + 0.707i)23-s + 1.00i·25-s i·27-s + 29-s − 31-s + 1.00i·35-s + (0.707 + 0.707i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2760\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.229 - 0.973i$
Analytic conductor: \(1.37741\)
Root analytic conductor: \(1.17363\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2760} (1793, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2760,\ (\ :0),\ -0.229 - 0.973i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7563524288\)
\(L(\frac12)\) \(\approx\) \(0.7563524288\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + (0.707 + 0.707i)T \)
23 \( 1 + (-0.707 - 0.707i)T \)
good7 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + (-1 - i)T + iT^{2} \)
17 \( 1 + (0.707 - 0.707i)T - iT^{2} \)
19 \( 1 + T^{2} \)
29 \( 1 - T + T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
41 \( 1 - iT - T^{2} \)
43 \( 1 + (1.41 - 1.41i)T - iT^{2} \)
47 \( 1 + iT^{2} \)
53 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
59 \( 1 + T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
71 \( 1 - iT - T^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 - 1.41T + T^{2} \)
83 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
89 \( 1 - 1.41iT - T^{2} \)
97 \( 1 + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.209455716847248768311046670699, −8.591614251924625629935328908237, −7.937441572484165017450743551844, −6.81091526371068312494924589569, −6.21124507125463421976822979471, −5.11052286252910781006752188929, −4.32658761438328176832168425598, −3.83676849180674104860882468450, −3.04049885620667910171302041284, −1.31830063175629385646288734923, 0.51816506731283528899889646883, 2.22164109880770970383911429454, 2.99202561121724629734560840101, 3.66681686779937131581053867195, 5.06743989227308102475928794293, 5.94605151962651728062059924958, 6.61369861722344177566515813137, 7.14506781986350377720032183316, 8.018003380680574137781993269467, 8.646434282653480259846305989257

Graph of the $Z$-function along the critical line