L(s) = 1 | − 3-s + 5-s + 9-s − 4·11-s − 2·13-s − 15-s + 2·17-s + 4·19-s − 23-s + 25-s − 27-s + 6·29-s − 8·31-s + 4·33-s − 2·37-s + 2·39-s − 6·41-s − 4·43-s + 45-s − 7·49-s − 2·51-s + 6·53-s − 4·55-s − 4·57-s − 12·59-s − 10·61-s − 2·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.258·15-s + 0.485·17-s + 0.917·19-s − 0.208·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.696·33-s − 0.328·37-s + 0.320·39-s − 0.937·41-s − 0.609·43-s + 0.149·45-s − 49-s − 0.280·51-s + 0.824·53-s − 0.539·55-s − 0.529·57-s − 1.56·59-s − 1.28·61-s − 0.248·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 + T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.334039169064503668276609892828, −7.62366390415530917242325699834, −6.93337431374782592133940577711, −6.02761946701485533470073230506, −5.23399614871427688390101987433, −4.86689218104112717450848419491, −3.52207120832898245816726657197, −2.61259340886468842131417046981, −1.47337466239487459412721363217, 0,
1.47337466239487459412721363217, 2.61259340886468842131417046981, 3.52207120832898245816726657197, 4.86689218104112717450848419491, 5.23399614871427688390101987433, 6.02761946701485533470073230506, 6.93337431374782592133940577711, 7.62366390415530917242325699834, 8.334039169064503668276609892828