L(s) = 1 | − 3-s + 5-s + 2.62·7-s + 9-s − 6.55·11-s + 7.06·13-s − 15-s + 6.42·17-s − 1.80·19-s − 2.62·21-s − 23-s + 25-s − 27-s − 7.17·29-s + 4.10·31-s + 6.55·33-s + 2.62·35-s + 4.62·37-s − 7.06·39-s + 4.30·41-s + 6.87·43-s + 45-s + 1.80·47-s − 0.132·49-s − 6.42·51-s − 4.93·53-s − 6.55·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.990·7-s + 0.333·9-s − 1.97·11-s + 1.96·13-s − 0.258·15-s + 1.55·17-s − 0.413·19-s − 0.571·21-s − 0.208·23-s + 0.200·25-s − 0.192·27-s − 1.33·29-s + 0.737·31-s + 1.14·33-s + 0.442·35-s + 0.759·37-s − 1.13·39-s + 0.672·41-s + 1.04·43-s + 0.149·45-s + 0.263·47-s − 0.0189·49-s − 0.899·51-s − 0.678·53-s − 0.884·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.874445560\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.874445560\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 + T \) |
good | 7 | \( 1 - 2.62T + 7T^{2} \) |
| 11 | \( 1 + 6.55T + 11T^{2} \) |
| 13 | \( 1 - 7.06T + 13T^{2} \) |
| 17 | \( 1 - 6.42T + 17T^{2} \) |
| 19 | \( 1 + 1.80T + 19T^{2} \) |
| 29 | \( 1 + 7.17T + 29T^{2} \) |
| 31 | \( 1 - 4.10T + 31T^{2} \) |
| 37 | \( 1 - 4.62T + 37T^{2} \) |
| 41 | \( 1 - 4.30T + 41T^{2} \) |
| 43 | \( 1 - 6.87T + 43T^{2} \) |
| 47 | \( 1 - 1.80T + 47T^{2} \) |
| 53 | \( 1 + 4.93T + 53T^{2} \) |
| 59 | \( 1 + 7.54T + 59T^{2} \) |
| 61 | \( 1 - 2.70T + 61T^{2} \) |
| 67 | \( 1 - 7.37T + 67T^{2} \) |
| 71 | \( 1 - 3.93T + 71T^{2} \) |
| 73 | \( 1 + 5.04T + 73T^{2} \) |
| 79 | \( 1 - 6.11T + 79T^{2} \) |
| 83 | \( 1 + 8.42T + 83T^{2} \) |
| 89 | \( 1 - 11.3T + 89T^{2} \) |
| 97 | \( 1 + 17.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.663328678828738534387291644166, −7.912008957227777081733627541938, −7.59309669667721712319670299883, −6.21836841087234510381836919492, −5.70397486593223759304657266723, −5.14443755231330115786808337543, −4.17827882382927729522881134874, −3.10036328468574466465834597737, −1.94773342832698858625827619317, −0.919255680418646679446121166177,
0.919255680418646679446121166177, 1.94773342832698858625827619317, 3.10036328468574466465834597737, 4.17827882382927729522881134874, 5.14443755231330115786808337543, 5.70397486593223759304657266723, 6.21836841087234510381836919492, 7.59309669667721712319670299883, 7.912008957227777081733627541938, 8.663328678828738534387291644166