L(s) = 1 | + 2.73i·2-s + 7.92i·3-s + 0.535·4-s − 21.6·6-s + 3.07i·7-s + 23.3i·8-s − 35.8·9-s − 11·11-s + 4.24i·12-s − 5.35i·13-s − 8.39·14-s − 59.4·16-s − 41.2i·17-s − 97.9i·18-s − 139.·19-s + ⋯ |
L(s) = 1 | + 0.965i·2-s + 1.52i·3-s + 0.0669·4-s − 1.47·6-s + 0.165i·7-s + 1.03i·8-s − 1.32·9-s − 0.301·11-s + 0.102i·12-s − 0.114i·13-s − 0.160·14-s − 0.928·16-s − 0.588i·17-s − 1.28i·18-s − 1.68·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.411692835\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.411692835\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + 11T \) |
good | 2 | \( 1 - 2.73iT - 8T^{2} \) |
| 3 | \( 1 - 7.92iT - 27T^{2} \) |
| 7 | \( 1 - 3.07iT - 343T^{2} \) |
| 13 | \( 1 + 5.35iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 41.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 139.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 111. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 24.9T + 2.43e4T^{2} \) |
| 31 | \( 1 - 31.4T + 2.97e4T^{2} \) |
| 37 | \( 1 - 13.1iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 261.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 57.7iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 343. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 342. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 88.3T + 2.05e5T^{2} \) |
| 61 | \( 1 - 738.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 342. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 207.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.01e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.29e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 441. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.48e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.34e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.80149489799244784035021206805, −10.94558535827759543346730258278, −10.19800569759812552753653228330, −9.117106124860681849433193532415, −8.332680359209660022192099951077, −7.15713222415703252182524346391, −5.93541461466281903632609737641, −5.10930925873633380741585036787, −4.05790502153425892943474322216, −2.56289422630260238368321333213,
0.50684220798334231562226717325, 1.80197377956965645335416910917, 2.64246023915408329191107017449, 4.20654532501381803700741064982, 6.13244279567184014590871469775, 6.78465561241106532973337912711, 7.81772965597152635372328368448, 8.794735396771399739850685654308, 10.25068997804125113722272531850, 10.95629529726510118124544253037