L(s) = 1 | + 2.73i·2-s + 7.92i·3-s + 0.535·4-s − 21.6·6-s + 3.07i·7-s + 23.3i·8-s − 35.8·9-s − 11·11-s + 4.24i·12-s − 5.35i·13-s − 8.39·14-s − 59.4·16-s − 41.2i·17-s − 97.9i·18-s − 139.·19-s + ⋯ |
L(s) = 1 | + 0.965i·2-s + 1.52i·3-s + 0.0669·4-s − 1.47·6-s + 0.165i·7-s + 1.03i·8-s − 1.32·9-s − 0.301·11-s + 0.102i·12-s − 0.114i·13-s − 0.160·14-s − 0.928·16-s − 0.588i·17-s − 1.28i·18-s − 1.68·19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
16.2255 |
Root analytic conductor: |
4.02809 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
≈ |
1.411692835 |
L(21) |
≈ |
1.411692835 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+11T |
good | 2 | 1−2.73iT−8T2 |
| 3 | 1−7.92iT−27T2 |
| 7 | 1−3.07iT−343T2 |
| 13 | 1+5.35iT−2.19e3T2 |
| 17 | 1+41.2iT−4.91e3T2 |
| 19 | 1+139.T+6.85e3T2 |
| 23 | 1−111.iT−1.21e4T2 |
| 29 | 1−24.9T+2.43e4T2 |
| 31 | 1−31.4T+2.97e4T2 |
| 37 | 1−13.1iT−5.06e4T2 |
| 41 | 1−261.T+6.89e4T2 |
| 43 | 1−57.7iT−7.95e4T2 |
| 47 | 1+343.iT−1.03e5T2 |
| 53 | 1−342.iT−1.48e5T2 |
| 59 | 1+88.3T+2.05e5T2 |
| 61 | 1−738.T+2.26e5T2 |
| 67 | 1−342.iT−3.00e5T2 |
| 71 | 1+207.T+3.57e5T2 |
| 73 | 1−1.01e3iT−3.89e5T2 |
| 79 | 1+1.29e3T+4.93e5T2 |
| 83 | 1+441.iT−5.71e5T2 |
| 89 | 1−1.48e3T+7.04e5T2 |
| 97 | 1−1.34e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.80149489799244784035021206805, −10.94558535827759543346730258278, −10.19800569759812552753653228330, −9.117106124860681849433193532415, −8.332680359209660022192099951077, −7.15713222415703252182524346391, −5.93541461466281903632609737641, −5.10930925873633380741585036787, −4.05790502153425892943474322216, −2.56289422630260238368321333213,
0.50684220798334231562226717325, 1.80197377956965645335416910917, 2.64246023915408329191107017449, 4.20654532501381803700741064982, 6.13244279567184014590871469775, 6.78465561241106532973337912711, 7.81772965597152635372328368448, 8.794735396771399739850685654308, 10.25068997804125113722272531850, 10.95629529726510118124544253037