L(s) = 1 | + (1.09 − 0.796i)2-s + (−0.177 − 0.547i)3-s + (−0.0501 + 0.154i)4-s + (−0.631 − 0.458i)6-s + (1.12 − 3.47i)7-s + (0.905 + 2.78i)8-s + (2.15 − 1.56i)9-s + (0.490 − 3.28i)11-s + 0.0933·12-s + (−2.29 + 1.66i)13-s + (−1.52 − 4.70i)14-s + (2.95 + 2.14i)16-s + (2.98 + 2.17i)17-s + (1.11 − 3.44i)18-s + (−0.0293 − 0.0904i)19-s + ⋯ |
L(s) = 1 | + (0.775 − 0.563i)2-s + (−0.102 − 0.315i)3-s + (−0.0250 + 0.0771i)4-s + (−0.257 − 0.187i)6-s + (0.426 − 1.31i)7-s + (0.320 + 0.985i)8-s + (0.719 − 0.522i)9-s + (0.147 − 0.989i)11-s + 0.0269·12-s + (−0.635 + 0.461i)13-s + (−0.408 − 1.25i)14-s + (0.738 + 0.536i)16-s + (0.724 + 0.526i)17-s + (0.263 − 0.811i)18-s + (−0.00674 − 0.0207i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.59033 - 0.991121i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.59033 - 0.991121i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-0.490 + 3.28i)T \) |
good | 2 | \( 1 + (-1.09 + 0.796i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (0.177 + 0.547i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-1.12 + 3.47i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.29 - 1.66i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.98 - 2.17i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.0293 + 0.0904i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.16T + 23T^{2} \) |
| 29 | \( 1 + (2.08 - 6.42i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (5.48 - 3.98i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (3.04 - 9.35i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.57 + 7.91i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.96T + 43T^{2} \) |
| 47 | \( 1 + (-0.687 - 2.11i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.42 + 1.75i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.62 - 8.09i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.86 - 4.98i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 13.4T + 67T^{2} \) |
| 71 | \( 1 + (6.71 + 4.88i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.407 + 1.25i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-11.2 + 8.15i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (8.61 + 6.25i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 12.1T + 89T^{2} \) |
| 97 | \( 1 + (3.50 - 2.54i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92279024836021634243859758799, −10.94794730075471552947568815805, −10.20923906728179200229580819751, −8.787664258721151405176590817774, −7.66789367091162350496386936575, −6.86237776365364875183327742078, −5.36214654125187473310090821069, −4.16802929896670752819210137907, −3.41127725753430372802640010255, −1.47796327373117168298806617629,
2.13926329412048976717365163497, 4.06697958676918546708605482388, 5.12214293969337174337336525495, 5.64383470261916782754013713628, 7.05223653434846154336638277318, 7.919613458849685235502239636545, 9.515887235148610332305725503096, 9.904663210881224144876202571879, 11.23388094899694593617222065931, 12.38836071467941380466392405565