Properties

Label 2-275-11.10-c4-0-36
Degree $2$
Conductor $275$
Sign $1$
Analytic cond. $28.4267$
Root an. cond. $5.33167$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7·3-s + 16·4-s − 32·9-s + 121·11-s − 112·12-s + 256·16-s − 167·23-s + 791·27-s − 553·31-s − 847·33-s − 512·36-s + 2.11e3·37-s + 1.93e3·44-s + 1.91e3·47-s − 1.79e3·48-s + 2.40e3·49-s + 718·53-s + 4.48e3·59-s + 4.09e3·64-s + 7.75e3·67-s + 1.16e3·69-s + 7.60e3·71-s − 2.94e3·81-s − 6.43e3·89-s − 2.67e3·92-s + 3.87e3·93-s + 9.79e3·97-s + ⋯
L(s)  = 1  − 7/9·3-s + 4-s − 0.395·9-s + 11-s − 7/9·12-s + 16-s − 0.315·23-s + 1.08·27-s − 0.575·31-s − 7/9·33-s − 0.395·36-s + 1.54·37-s + 44-s + 0.868·47-s − 7/9·48-s + 49-s + 0.255·53-s + 1.28·59-s + 64-s + 1.72·67-s + 0.245·69-s + 1.50·71-s − 0.448·81-s − 0.812·89-s − 0.315·92-s + 0.447·93-s + 1.04·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(28.4267\)
Root analytic conductor: \(5.33167\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{275} (76, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.917851695\)
\(L(\frac12)\) \(\approx\) \(1.917851695\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - p^{2} T \)
good2 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
3 \( 1 + 7 T + p^{4} T^{2} \)
7 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
13 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
17 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
19 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
23 \( 1 + 167 T + p^{4} T^{2} \)
29 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
31 \( 1 + 553 T + p^{4} T^{2} \)
37 \( 1 - 2113 T + p^{4} T^{2} \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
47 \( 1 - 1918 T + p^{4} T^{2} \)
53 \( 1 - 718 T + p^{4} T^{2} \)
59 \( 1 - 4487 T + p^{4} T^{2} \)
61 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
67 \( 1 - 7753 T + p^{4} T^{2} \)
71 \( 1 - 7607 T + p^{4} T^{2} \)
73 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
79 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
83 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
89 \( 1 + 6433 T + p^{4} T^{2} \)
97 \( 1 - 9793 T + p^{4} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35638834289702611147438170237, −10.59503317237476959971244725426, −9.466399368896240202751142479489, −8.246877520358575604033153247867, −7.05540670263739542606916631594, −6.25567904650276660026179649655, −5.43000366258736901657075423445, −3.87385216770516536395146827868, −2.42309812595471065722378354206, −0.925741555458872153331813960097, 0.925741555458872153331813960097, 2.42309812595471065722378354206, 3.87385216770516536395146827868, 5.43000366258736901657075423445, 6.25567904650276660026179649655, 7.05540670263739542606916631594, 8.246877520358575604033153247867, 9.466399368896240202751142479489, 10.59503317237476959971244725426, 11.35638834289702611147438170237

Graph of the $Z$-function along the critical line