Properties

Label 2-275-11.10-c2-0-25
Degree $2$
Conductor $275$
Sign $1$
Analytic cond. $7.49320$
Root an. cond. $2.73737$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s + 4·4-s + 16·9-s − 11·11-s + 20·12-s + 16·16-s − 35·23-s + 35·27-s − 37·31-s − 55·33-s + 64·36-s + 25·37-s − 44·44-s − 50·47-s + 80·48-s + 49·49-s + 70·53-s + 107·59-s + 64·64-s − 35·67-s − 175·69-s − 133·71-s + 31·81-s − 97·89-s − 140·92-s − 185·93-s − 95·97-s + ⋯
L(s)  = 1  + 5/3·3-s + 4-s + 16/9·9-s − 11-s + 5/3·12-s + 16-s − 1.52·23-s + 1.29·27-s − 1.19·31-s − 5/3·33-s + 16/9·36-s + 0.675·37-s − 44-s − 1.06·47-s + 5/3·48-s + 49-s + 1.32·53-s + 1.81·59-s + 64-s − 0.522·67-s − 2.53·69-s − 1.87·71-s + 0.382·81-s − 1.08·89-s − 1.52·92-s − 1.98·93-s − 0.979·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(7.49320\)
Root analytic conductor: \(2.73737\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{275} (76, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.200741775\)
\(L(\frac12)\) \(\approx\) \(3.200741775\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + p T \)
good2 \( ( 1 - p T )( 1 + p T ) \)
3 \( 1 - 5 T + p^{2} T^{2} \)
7 \( ( 1 - p T )( 1 + p T ) \)
13 \( ( 1 - p T )( 1 + p T ) \)
17 \( ( 1 - p T )( 1 + p T ) \)
19 \( ( 1 - p T )( 1 + p T ) \)
23 \( 1 + 35 T + p^{2} T^{2} \)
29 \( ( 1 - p T )( 1 + p T ) \)
31 \( 1 + 37 T + p^{2} T^{2} \)
37 \( 1 - 25 T + p^{2} T^{2} \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( ( 1 - p T )( 1 + p T ) \)
47 \( 1 + 50 T + p^{2} T^{2} \)
53 \( 1 - 70 T + p^{2} T^{2} \)
59 \( 1 - 107 T + p^{2} T^{2} \)
61 \( ( 1 - p T )( 1 + p T ) \)
67 \( 1 + 35 T + p^{2} T^{2} \)
71 \( 1 + 133 T + p^{2} T^{2} \)
73 \( ( 1 - p T )( 1 + p T ) \)
79 \( ( 1 - p T )( 1 + p T ) \)
83 \( ( 1 - p T )( 1 + p T ) \)
89 \( 1 + 97 T + p^{2} T^{2} \)
97 \( 1 + 95 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70252244653229272988728789552, −10.49713713700157037082299522380, −9.799179467378117947108662290380, −8.589690281052869912569493096174, −7.82732655977153555089795883751, −7.11980403834502415525552504414, −5.70224133999946930035905387177, −3.94841571058193275478169853868, −2.81542248842016306446563241604, −1.94808752404925098621157871892, 1.94808752404925098621157871892, 2.81542248842016306446563241604, 3.94841571058193275478169853868, 5.70224133999946930035905387177, 7.11980403834502415525552504414, 7.82732655977153555089795883751, 8.589690281052869912569493096174, 9.799179467378117947108662290380, 10.49713713700157037082299522380, 11.70252244653229272988728789552

Graph of the $Z$-function along the critical line