Properties

Label 2-275-11.10-c0-0-0
Degree $2$
Conductor $275$
Sign $1$
Analytic cond. $0.137242$
Root an. cond. $0.370463$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 9-s − 11-s + 16-s − 2·31-s − 36-s − 44-s + 49-s − 2·59-s + 64-s + 2·71-s + 81-s + 2·89-s + 99-s + ⋯
L(s)  = 1  + 4-s − 9-s − 11-s + 16-s − 2·31-s − 36-s − 44-s + 49-s − 2·59-s + 64-s + 2·71-s + 81-s + 2·89-s + 99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(0.137242\)
Root analytic conductor: \(0.370463\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{275} (76, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8416235229\)
\(L(\frac12)\) \(\approx\) \(0.8416235229\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
good2 \( ( 1 - T )( 1 + T ) \)
3 \( 1 + T^{2} \)
7 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T^{2} \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( ( 1 + T )^{2} \)
37 \( 1 + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( 1 + T^{2} \)
53 \( 1 + T^{2} \)
59 \( ( 1 + T )^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( 1 + T^{2} \)
71 \( ( 1 - T )^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03665640557783310173742506357, −11.06753192974394098755750756277, −10.56665117242895606014718944826, −9.259365988283614764895460982642, −8.108207639077362766239213111613, −7.29566488255358536017266907596, −6.08870587299178266906232232204, −5.23996740044376597677772147063, −3.38062344130934599018715121049, −2.24118419810646243153124720786, 2.24118419810646243153124720786, 3.38062344130934599018715121049, 5.23996740044376597677772147063, 6.08870587299178266906232232204, 7.29566488255358536017266907596, 8.108207639077362766239213111613, 9.259365988283614764895460982642, 10.56665117242895606014718944826, 11.06753192974394098755750756277, 12.03665640557783310173742506357

Graph of the $Z$-function along the critical line