Properties

Label 2-275-1.1-c5-0-66
Degree $2$
Conductor $275$
Sign $-1$
Analytic cond. $44.1055$
Root an. cond. $6.64120$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 15·3-s − 16·4-s + 60·6-s − 10·7-s − 192·8-s − 18·9-s − 121·11-s − 240·12-s + 1.14e3·13-s − 40·14-s − 256·16-s − 686·17-s − 72·18-s − 384·19-s − 150·21-s − 484·22-s − 3.70e3·23-s − 2.88e3·24-s + 4.59e3·26-s − 3.91e3·27-s + 160·28-s − 5.42e3·29-s − 6.44e3·31-s + 5.12e3·32-s − 1.81e3·33-s − 2.74e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.962·3-s − 1/2·4-s + 0.680·6-s − 0.0771·7-s − 1.06·8-s − 0.0740·9-s − 0.301·11-s − 0.481·12-s + 1.88·13-s − 0.0545·14-s − 1/4·16-s − 0.575·17-s − 0.0523·18-s − 0.244·19-s − 0.0742·21-s − 0.213·22-s − 1.46·23-s − 1.02·24-s + 1.33·26-s − 1.03·27-s + 0.0385·28-s − 1.19·29-s − 1.20·31-s + 0.883·32-s − 0.290·33-s − 0.407·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(44.1055\)
Root analytic conductor: \(6.64120\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 275,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + p^{2} T \)
good2 \( 1 - p^{2} T + p^{5} T^{2} \)
3 \( 1 - 5 p T + p^{5} T^{2} \)
7 \( 1 + 10 T + p^{5} T^{2} \)
13 \( 1 - 1148 T + p^{5} T^{2} \)
17 \( 1 + 686 T + p^{5} T^{2} \)
19 \( 1 + 384 T + p^{5} T^{2} \)
23 \( 1 + 3709 T + p^{5} T^{2} \)
29 \( 1 + 5424 T + p^{5} T^{2} \)
31 \( 1 + 6443 T + p^{5} T^{2} \)
37 \( 1 + 12063 T + p^{5} T^{2} \)
41 \( 1 + 1528 T + p^{5} T^{2} \)
43 \( 1 - 4026 T + p^{5} T^{2} \)
47 \( 1 + 7168 T + p^{5} T^{2} \)
53 \( 1 - 29862 T + p^{5} T^{2} \)
59 \( 1 + 6461 T + p^{5} T^{2} \)
61 \( 1 + 16980 T + p^{5} T^{2} \)
67 \( 1 + 29999 T + p^{5} T^{2} \)
71 \( 1 - 31023 T + p^{5} T^{2} \)
73 \( 1 + 1924 T + p^{5} T^{2} \)
79 \( 1 - 65138 T + p^{5} T^{2} \)
83 \( 1 - 102714 T + p^{5} T^{2} \)
89 \( 1 - 17415 T + p^{5} T^{2} \)
97 \( 1 + 66905 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61200942080076909054910336877, −9.278914622620082701260304109218, −8.713267165263330666469282906893, −7.898897459445359465829128190518, −6.31375396214525710120739091857, −5.43873736892736443824916066237, −3.94087720237654635375079762616, −3.42720455462506406132544889603, −1.95904305716157798578336938773, 0, 1.95904305716157798578336938773, 3.42720455462506406132544889603, 3.94087720237654635375079762616, 5.43873736892736443824916066237, 6.31375396214525710120739091857, 7.898897459445359465829128190518, 8.713267165263330666469282906893, 9.278914622620082701260304109218, 10.61200942080076909054910336877

Graph of the $Z$-function along the critical line