Properties

Label 2-275-1.1-c3-0-14
Degree $2$
Conductor $275$
Sign $1$
Analytic cond. $16.2255$
Root an. cond. $4.02809$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.43·2-s − 0.561·3-s − 5.93·4-s − 0.807·6-s + 31.0·7-s − 20.0·8-s − 26.6·9-s − 11·11-s + 3.33·12-s + 45.6·13-s + 44.6·14-s + 18.6·16-s + 40.4·17-s − 38.3·18-s + 91.2·19-s − 17.4·21-s − 15.8·22-s − 32.2·23-s + 11.2·24-s + 65.6·26-s + 30.1·27-s − 184.·28-s + 35.8·29-s + 311.·31-s + 187.·32-s + 6.17·33-s + 58.1·34-s + ⋯
L(s)  = 1  + 0.508·2-s − 0.108·3-s − 0.741·4-s − 0.0549·6-s + 1.67·7-s − 0.885·8-s − 0.988·9-s − 0.301·11-s + 0.0801·12-s + 0.973·13-s + 0.852·14-s + 0.290·16-s + 0.577·17-s − 0.502·18-s + 1.10·19-s − 0.181·21-s − 0.153·22-s − 0.292·23-s + 0.0957·24-s + 0.494·26-s + 0.214·27-s − 1.24·28-s + 0.229·29-s + 1.80·31-s + 1.03·32-s + 0.0325·33-s + 0.293·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(16.2255\)
Root analytic conductor: \(4.02809\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.110753196\)
\(L(\frac12)\) \(\approx\) \(2.110753196\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + 11T \)
good2 \( 1 - 1.43T + 8T^{2} \)
3 \( 1 + 0.561T + 27T^{2} \)
7 \( 1 - 31.0T + 343T^{2} \)
13 \( 1 - 45.6T + 2.19e3T^{2} \)
17 \( 1 - 40.4T + 4.91e3T^{2} \)
19 \( 1 - 91.2T + 6.85e3T^{2} \)
23 \( 1 + 32.2T + 1.21e4T^{2} \)
29 \( 1 - 35.8T + 2.43e4T^{2} \)
31 \( 1 - 311.T + 2.97e4T^{2} \)
37 \( 1 - 368.T + 5.06e4T^{2} \)
41 \( 1 + 393.T + 6.89e4T^{2} \)
43 \( 1 - 351.T + 7.95e4T^{2} \)
47 \( 1 - 230.T + 1.03e5T^{2} \)
53 \( 1 + 406.T + 1.48e5T^{2} \)
59 \( 1 + 368.T + 2.05e5T^{2} \)
61 \( 1 + 322.T + 2.26e5T^{2} \)
67 \( 1 + 442.T + 3.00e5T^{2} \)
71 \( 1 - 667.T + 3.57e5T^{2} \)
73 \( 1 - 84.5T + 3.89e5T^{2} \)
79 \( 1 + 411.T + 4.93e5T^{2} \)
83 \( 1 - 835.T + 5.71e5T^{2} \)
89 \( 1 + 799.T + 7.04e5T^{2} \)
97 \( 1 + 768.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.59803719714915946088371471098, −10.73996577671307568473371378291, −9.449723296235921756473456115223, −8.346354681001119401122685413277, −7.928979957336453317481974079833, −6.03997994047472442566270334482, −5.25152315439754542348016722924, −4.35860796720789923867682379772, −2.96533231805879633072178280893, −1.04069971571058297044101241945, 1.04069971571058297044101241945, 2.96533231805879633072178280893, 4.35860796720789923867682379772, 5.25152315439754542348016722924, 6.03997994047472442566270334482, 7.928979957336453317481974079833, 8.346354681001119401122685413277, 9.449723296235921756473456115223, 10.73996577671307568473371378291, 11.59803719714915946088371471098

Graph of the $Z$-function along the critical line